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Abstract

To study competition, innovation, and industry dynamics that arise as a result of their interaction, we
develop a new oligopolistic general-equilibrium Schumpeterian growth model. This model ties together
the endogenous growth, oligopolistic competition, and dynamic industrial organization literatures in a
single unified framework, which is used to assess the growth and welfare implications of counterfactuals.
Within each industry, there are an endogenously determined number of large firms (“superstars”) that
compete à la Cournot and a continuum of small firms which collectively constitute a competitive fringe.
Firms dynamically choose their innovation strategies, cognizant of other firms’ choices, and their entry
and exit are endogenous. The model is consistent with the macroeconomic trends observed in the
United States since the 1970s, such as the domination of industries by a small number of superstar
firms, the rise of markups, market concentration, profits, and R&D spending, and the decline in business
dynamism, productivity growth, and the labor share. It replicates the empirical relationship between
innovation and competition within and across industries. As an application, we estimate the model
to disentangle the effects of separate mechanisms on the structural transition observed in the United
States, which yields striking results: (1) While the increase in the average markup causes a significant
static welfare loss, this loss is overshadowed by the dynamic welfare gains from increased innovation
in response to higher profit opportunities. (2) The increasing costs of innovation are found to be the
primary determinant of lackluster productivity growth, i.e., ideas are getting harder to find.
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1 Introduction

Consumer welfare depends crucially on both competition and long-run productivity growth. Firms’

forward-looking entry and innovation decisions determine the market structure in industries in terms of

the number of competing firms and their productivities, and consequently, product market competition.

In turn, product market competition determines which firms can reap the highest profits as the reward

of their innovation efforts. Therefore, competition and growth are inseparably interlinked. Their joint

study calls for a theoretical framework that can simultaneously capture the general-equilibrium effects

of firms’ strategic innovation decisions on economic growth and industrial structure, as well as the rich

within-industry dynamics featuring heterogeneity in market shares, markups, and profitability, which in

turn influence the (mis)allocation of resources.

Thus motivated, we develop a new unified framework that ties together the endogenous growth,

oligopolistic competition, and dynamic industrial organization literatures, combining their most important

features without giving up on tractability. It serves as a laboratory to answer a wide range of questions

related to competition and growth, which is amenable to extensions in several directions. This framework

is particularly well-suited for studying the underlying economic mechanisms behind the recent macroeco-

nomic trends observed in the United States since the 1970s, such as the increase in market concentration

and markups that were accompanied by lackluster productivity growth, and its application delivers some

surprising new insights.

Our new framework possesses several desirable properties when it comes to questions related to

market structure, competition, innovation, and growth, especially in light of the recent literature on rising

concentration and markups. At the industry level, it is able to generate rich heterogeneity in market

shares, consistent with the empirically-observed industry-level market share distributions. It offers realistic

industry dynamics with firm heterogeneity within and across industries, and endogenous firm entry and

exit that generate a distribution of industries populated by different numbers of large firms with different

relative productivities. The model is also able to generate realistic firm life cycles with gradual changes in

productivity and market shares.

At the firm level, the model captures static and dynamic strategic interactions between firms: (1) product

market competition which determines relative prices, market shares, markups, profits, labor demand,

and labor shares endogenously; (2) dynamic innovation decisions to improve firm productivity over

time, optimally chosen in response to the innovation policies of competing firms. Finally, the framework

is able to replicate the observed non-linear relationship between innovation and competition:1 (1) a

hump-shaped relationship between industry innovation and market concentration across industries,2 and

(2) a hump-shaped relationship between firm innovation and relative sales within industries.3 Consistency

in these last two dimensions is important, since welfare implications of a change in market concentration

do not only depend on static inefficiencies caused by markups, but also on the dynamic inefficiencies in

innovation and aggregate productivity growth.

This rich framework allows us to analyze recent trends in the US economy. Since the 1970s, there

have been significant changes in firm dynamics within and across industries in the US, with quantitatively

1The model can also generate other types of relationship between innovation and competition, depending on parameter values.
2See Aghion, Bloom, Blundell, Griffith, and Howitt (2005), and the stylized facts in Section 3.1.
3See Section 3.1.
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important implications for the macroeconomy at large. Industries are increasingly dominated by a small

number of large firms (“superstars”, “megafirms”) which compete against each other in the product market,

as well as through dynamic strategic innovation decisions. At the aggregate level, average markup, market

concentration, profits, and R&D spending are increasing, whereas business dynamism and the labor share

are in decline.4 Despite a rise in the late 90s and early 2000s, productivity growth has been slowing down.

These sweeping changes have drawn considerable attention from academics, policymakers, and the public

alike. Discovering and understanding the economic mechanisms underlying this transformation are key

to assess the implications for efficiency, economic growth, and social welfare, which can then be used to

formulate optimal policy responses. In this paper, we offer a unified framework to study these trends and

uncover the underlying reasons.

Our new quantitative model with all its desirable properties remains highly tractable despite its rich

dynamics and heterogeneity, and its quantification yields some striking insights. It can be described as

a combination of a detailed oligopolistic competition model with endogenous entry and exit, and a new

Schumpeterian growth model that features step-by-step innovation. Within each industry and at any given

time, there is an endogenously determined number of large firms – the superstars – and a continuum of

small firms which collectively constitute a competitive fringe. Relative to small firms, superstar firms in the

model are characterized by higher productivity and larger market shares. Entrepreneurs choose the entry

rate of new small businesses. Industry output is a CES aggregate of the production of superstar firms and

the competitive fringe, and the superstars compete à la Cournot. This specification yields non-degenerate

distributions of sales, employment, and markups in each industry, a contribution upon Schumpeterian

growth models with Bertrand competition and homogeneous goods. The distributions depend on the

number of superstar firms and the distribution of their productivities, as well as the relative productivity

of the competitive fringe. These industry characteristics endogenously change over time according to

the strategic innovation decisions of the superstars and the small firms. Motivated by higher profits, the

superstars undertake costly R&D in order to improve their productivity relative to their competitors. Small

firms also spend resources on R&D, and conditional on success, they join the ranks of the superstars. At

the same time, a large firm that lags behind can lose its status as a superstar if its productivity relative

to the leader falls to a sufficiently low level. Combined, these dynamics generate transitions between

industry states, resulting in a stationary distribution along a balanced growth path equilibrium. Aggregate

productivity growth in the economy is determined by the innovation decisions in each industry, weighted

by this invariant distribution across industry states in a stationary economy. The model can generate the

described hump-shaped relationship between innovation and competition within and across industries.

Our model provides a unified framework that simultaneously combines and extends three strands

of literature. First, we generalize the Schumpeterian step-by-step innovation models in the endogenous

growth literature to have an arbitrary number of large firms instead of a duopoly, and a competitive

fringe of small firms to capture the existence of thousands of small firms observed in the real world,

which delivers both realistic firm dynamics and market share distributions. Second, we augment static

oligopolistic competition models such as Atkeson and Burstein (2008) and Autor, Dorn, Katz, Patterson, and

Van Reenen (2020) with a completely endogenous industry structure featuring endogenous productivity

growth, entry, and exit, while accounting for dynamic strategic interactions in a Markov Perfect equilibrium.

4See Akcigit and Ates (2021) for an extensive summary and discussion of these trends.
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Finally, our model constitutes a general equilibrium version of dynamic industrial organization models such

as Ericson and Pakes (1995) with endogenous growth, where the ergodic distribution of the industry-states

for a single industry simultaneously becomes the cross-sectional stationary distribution across a continuum

of industries in the aggregate. This unified framework provides a laboratory for answering questions at the

intersection of these three literatures.

We estimate our model via indirect inference using macro and micro level moments related to growth,

R&D investment, markup distribution, profitability, productivity, and the relationship between market

shares and innovation from three different samples. First, we estimate the model using all available data

between 1976 and 2004, and use the estimated equilibrium to clarify the workings of the mechanisms in

the model, with a special emphasis on the relationship between competition and innovation, and how it

differs from other models in the literature that study similar questions. We also split our data into two

sub-samples – an early sub-sample from 1976 to 1994, and a late sub-sample after 1994 – and re-estimate.5

We use these two estimates to disentangle the mechanisms underlying the structural transition in the

US over these three decades. We achieve this by starting from the late period economy, and considering

counterfactual economies where parameters governing individual mechanisms are reset back to their early

period values. This helps us quantify what channels contribute the most to – or work against – the observed

changes in the macroeconomic aggregates.

Perhaps one of the most important questions to ask is whether the observed increase in markups is

detrimental to welfare and economic growth. While the static losses from increased markups are well-

known and unambiguous, the dynamic effects can go in either direction, as evidenced by the hump-shaped

relationship between innovation and competition. Increased competition can boost innovation as firms try

to improve their relative productivity (“escape competition”), or lower it if they get discouraged by lower

expected profits. Which channel dominates is a quantitative question. First, we show that most of the rise

in markups is driven by a decrease in competition from small firms instead of a decrease in competition

among large firms. Next, we conduct a counterfactual exercise in which we reset the competition from

small firms to its early period level, and compute the consumption-equivalent welfare change. The results

are striking: the growth rate goes down by 21.0% of its value, and instead of a net gain, social welfare

is reduced by 7.60%. Decomposing the change in welfare into its individual components reveals that

although the static efficiency gains would improve welfare by 4.13%, the fall in profitability discourages

innovation, and the dynamic losses from the decline in endogenous productivity growth more than offset

the static gain. In other words, if markups had stayed the same across the period, economic growth would

have been slower. Our results suggest that the dynamic effects of increasing market concentration on

innovation and productivity growth should not be ignored when trying to understand the transformation

in the US in the last four decades, and the significant increase in markups is not necessarily detrimental to

welfare.

Our model also has interesting predictions regarding the cost of innovation over time. While productivity

growth increased between the early and late periods, our model suggests that the cost of innovation went

up over the same period, both for large and small firms. These results point towards “the ideas are getting

harder to find” hypothesis studied in Gordon (2012) and Bloom, Jones, Van Reenen, and Webb (2020).

5We restrict our baseline analysis to 1976-2004 due to data limitations and the assumptions that need to be made on how to
deal with the Great Recession period. However, our results covering the later period until 2016, presented in Section 7.1, reveal
the same qualitative changes.
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In other words, the rising cost of innovation has partially offset the positive effect of rising markups on

economic growth and welfare. If R&D efficiency had not decreased, productivity growth would have

accelerated even faster between the early and late periods.6

Our estimated model also delivers several predictions that can be tested, especially related to trends in

productivity, market concentration, and the labor share. Although they are not targeted, we show that our

estimation correctly predicts the increase in productivity dispersion documented by Barth, Bryson, Davis,

and Freeman (2016) and the negative correlation between productivity dispersion and the labor share

across industries highlighted in Gouin-Bonenfant (2022). In addition, our model is in line with several

facts related to changes in the labor share documented in Autor, Dorn, Katz, Patterson, and Van Reenen

(2020). These tests further confirm the external validity of the model.

Our quantitative results are found to be robust to introducing endogenous capital accumulation, as

well as using different values for the elasticity of intertemporal substitution. Neither are they sensitive to

using different targets to discipline markups. Our baseline estimation targets the sales-weighted markup

moments from De Loecker, Eeckhout, and Unger (2020). Targeting cost-weighted markups from Edmond,

Midrigan, and Xu (2023) does not lead to sizable differences. Motivated by the recent criticism in Bond,

Hashemi, Kaplan, and Zoch (2021) regarding the consistency of the markup estimation methodology

developed in De Loecker and Warzynski (2012), we also conduct an estimation which does not rely on any

markup targets. Our results are likewise found to be robust to modeling competition à la Bertrand and to

assuming decreasing returns to scale in production.

Solving for the non-stationary equilibria of our model is significantly more challenging than in standard

macroeconomic models, given that it requires calculating the complete time paths of 86 continuous state

variables given our choices.7 Despite the complexity, the tractability of our framework and our choice to

use a continuous-time setting render the computation of non-stationary equilibria feasible. We find that

our welfare results remain robust to taking the transitional dynamics into account.

For further elucidation, we also solve the (unconstrained as well as constrained) social planner’s

problem dynamically, which is once again complex, yet feasible.8 Consistent with our results regarding

the welfare effect of increasing markups, the solution to the planner’s problem reveals that the dynamic

inefficiencies due to under-investment in innovation are much more severe than the static inefficiencies

due to market power, even though the latter are quite significant on their own. This result suggests that

the optimal design of corporate taxation and R&D subsidies, studied in Akcigit, Hanley, and Stantcheva

(2022), is first-order for social welfare and economic growth.

This paper is related to the literature on the welfare cost of markups and a recent body of literature

that investigates the increase in market concentration and the associated increase in markups and profit

shares over the last few decades in the US as highlighted in Barkai (2020), Gutiérrez and Philippon

(2017a), Eggertsson, Robbins, and Wold (2021), Hall (2018), De Loecker, Eeckhout, and Unger (2020),

6In Section 7.1, we extend our analysis to the most recent period from 2006 to 2016, which has been characterized by a
productivity slowdown. We show that our main results remain unchanged and that this period also features an increase in the
cost of innovation, which more than offsets the positive effect of increased concentration on innovation and growth.

7For comparison, computing non-stationary equilibria in the canonical neoclassical growth model requires finding the complete
time path of a single continuous state variable, the capital stock Kt.

8Even though we simplify the full dynamic problem significantly through our derivations, this still leaves 253 positive scalars
to be simultaneously solved for through global optimization methods.

5



and Grullon, Larkin, and Michaely (2019).9 Gutiérrez and Philippon (2017b) and Gutiérrez, Jones, and

Philippon (2021) show that the increase in market concentration and the decline in competition can

explain underinvestment by US firms. Covarrubias, Gutiérrez, and Philippon (2020) distinguish between

so-called good and bad concentration. For instance, market concentration can be good if it is associated with

technological change while increased concentration due to barriers to entry would be bad. They further

suggest that market concentration in the US turned from being efficient in the 1990s to being inefficient

after 2000. Rossi-Hansberg, Sarte, and Trachter (2021) find that the observed positive trend in market

concentration at the national level in the US has been accompanied by a corresponding negative trend in

average local market concentration. Baqaee and Farhi (2020) estimate that misallocation due to large and

dispersed markups results in a TFP loss as large as 15%. Recent work by Edmond, Midrigan, and Xu (2023)

is closely related to our paper. Using a dynamic model with size-dependent markups, they find sizeable

welfare losses from markups. Weiss (2020) studies the role played by intangible capital on markup trends

and welfare in a model with oligopolistic competition and a one-time investment in intangible capital

by firms. Compared to these papers, our model has continuous and strategic investment in productivity

growth, and oligopolistic competition between an endogenous number of heterogeneous innovative firms.

Our Schumpeterian structure delivers significant differences regarding the dynamics, growth, and welfare.

De Loecker, Eeckhout, and Mongey (2022) also study the causes and consequences of market power in

general equilibrium. Our model differs from their approach, as we endogenize productivity growth and

model strategic interactions between firms in innovation. This difference is significant, since allowing for

endogenous productivity growth can completely overturn the welfare implications of higher markups as

we discussed earlier.

Our paper also adds to the endogenous growth literature studying the relationship between competition

and innovation. In early Schumpeterian models of growth through innovation (e.g., Aghion and Howitt

(1992)), more product market competition reduces rents and hence the incentives to invest in R&D and

innovation. Aghion, Harris, Howitt, and Vickers (2001) propose a model of step-by-step innovation by

superstar firms. By introducing an additional incentive to escape competition, this model can generate an

inverted-U shape relationship between the degree of market competition (measured by the elasticity of

substitution between products) and innovation. Using a similar model, Aghion, Bloom, Blundell, Griffith,

and Howitt (2005) also generate an inverted-U shape relationship between competition and innovation.10

They further provide empirical evidence for such an inverted-U shape relationship between innovation

activity and industry competition using data from the UK. We also undertake an empirical analysis in which

we look at the relationship between competition and innovation using data from the US. We verify that the

findings in Aghion, Bloom, Blundell, Griffith, and Howitt (2005) also hold in the US using several measures

of innovation. Furthermore, we also document a robust inverted-U relationship between the relative sales

of a firm and its innovation. Our model is able to replicate the two hump-shaped relationships within and

across industries without relying on exogenous heterogeneity,11 and in the presence of endogenous firm

entry.12

9De Loecker and Eeckhout (2018) also document similar trends for markups in other regions of the world.
10See Gilbert (2006) for an extensive review of the literature on competition and innovation.
11For instance, in Aghion, Bloom, Blundell, Griffith, and Howitt (2005), exogenous heterogeneity in collusion across industries

is assumed to generate the inverted-U result.
12Etro (2007) argues that the industry-level inverted-U relationship breaks down when endogenous entry is introduced to
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Within the class of endogenous growth models, the closest papers to ours are Peters and Walsh (2019),

Akcigit and Ates (2021, 2023), Liu, Mian, and Sufi (2022), Olmstead-Rumsey (2022), Aghion, Bergeaud,

Boppart, Klenow, and Li (2023), and De Ridder (2023).13 Peters and Walsh (2019) propose an extension of

Peters (2020) to study the role of the decline in the growth rate of the labor force on the observed decline in

business dynamism, increased market power, and slower productivity growth.14 Building on Acemoglu and

Akcigit (2012), Akcigit and Ates (2021, 2023) propose a model of endogenous growth and firm dynamics

with heterogeneous markups and show that declining knowledge diffusion played a significant role in

declining business dynamism. Liu, Mian, and Sufi (2022) show that a decline in the interest rate can lead

to a rise in market concentration and a slowdown in productivity growth. Olmstead-Rumsey (2022) shows,

using an endogenous growth model in which the quality of new ideas is heterogeneous, that the decline in

small firms’ innovativeness can be linked to recent trends in market concentration and productivity growth.

Aghion, Bergeaud, Boppart, Klenow, and Li (2023) explain the rise in concentration and profits through

falling firm-level costs of spanning multiple markets due to accelerating IT advances. De Ridder (2023)

shows that the rise in intangible inputs can explain the recent trends in productivity growth and business

dynamism as it causes a shift from variable to fixed costs. In both Aghion, Bergeaud, Boppart, Klenow, and

Li (2023) and De Ridder (2023), the rise in concentration can be temporarily associated with an increase

in productivity growth. In the long run, productivity growth decreases.

Most of the listed papers assume Bertrand competition with homogeneous goods in each industry.15

Markups depend directly on the productivity gap between the leader and the follower. Unless firms are

neck-and-neck, the leader takes over the whole industry. Our paper differs from the literature in its

rigorous treatment of within-industry dynamics as discussed earlier. Our model features non-degenerate

distributions of sales, employment, markups, and profits within each industry. It allows for an arbitrarily

high and endogenous number of oligopolistically-competing firms in each industry.16 These advances upon

the previous literature allow us to hit the hump-shaped relationship between competition and innovation

within and across industries, which helps discipline the estimated growth and welfare implications of

higher market concentration and markups. The new competitive fringe feature of our model allows for

realistic market share distributions and firm life cycles where entrants do not immediately become industry

leaders, and we can distinguish new business entry from the emergence of new superstars.17 Apart from

the technical differences, our study also differs in its quantitative approach. Instead of searching for a

single mechanism which can jointly explain all the changes in the macroeconomic aggregates to some

Aghion, Harris, Howitt, and Vickers (2001). Our model provides a counterexample. Other counterexamples can be found in Bento
(2014, 2020)

13In other related work, Corhay, Kung, and Schmid (2021) use a Romer-type endogenous growth model to study the asset
pricing implications of increasing markups.

14In a model without endogenous growth, Hopenhayn, Neira, and Singhania (2022) also show that declining population growth
can explain a large share of the observed decline in firm entry and productivity slowdown.

15Two exceptions are Liu, Mian, and Sufi (2022) and Olmstead-Rumsey (2022) which propose models of endogenous growth
with Bertrand competition between two firms with differentiated products. However, they maintain the perpetual duopoly
assumption that pervades the step-by-step innovation literature, as opposed to allowing an endogenous number of superstars in
each industry as we do.

16Peretto (1996) features a model with an endogenous number of firms in the aggregate economy, but focuses on a symmetric
equilibrium where all firms have the same productivity, innovation, and sales. Impullitti and Licandro (2018) also consider
a model of endogenous growth with oligopolistic competition. In contrast to our framework, they focus on industries with a
common (endogenous) number of homogeneous firms.

17Ghazi (2021) proposes a model with a competitive fringe and a single dominant firm but does not consider innovation by
small firms.
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degree, our estimation tightly hits all the changes, and we use the model to disentangle the contribution

of each channel. This provides some guidance on which mechanisms should be further investigated to

better understand the underlying sources of the structural transition, such as the widening productivity

gap between the superstars and the rest, and the increasing costs of R&D.

Our paper is related to the broader literature on the decline in business dynamism. A large body of that

literature shows that the entry rate of new firms has significantly decreased in the US since the early 1980s

(see for instance, Hathaway and Litan (2014), Decker, Haltiwanger, Jarmin, and Miranda (2016), Pugsley

and Sahin (2018)). The decline in firm entry can further affect productivity growth. For instance, Lentz

and Mortensen (2008), Garcia-Macia, Hsieh, and Klenow (2019) and Acemoglu, Akcigit, Alp, Bloom, and

Kerr (2018) find that a significant share of aggregate TFP growth and job creation is due to firm entry and

young firms. Our quantitative exercise reveals that not only the share of output by small firms decreases

but also that these firms are less likely to become superstar firms due to higher R&D costs.

Our results also add to the recent literature on the slowdown of TFP growth in the US. Gordon (2012,

2014) argues that the significant slowdown in the rate of productivity growth in the US since the 1970s

is due to diminishing returns from R&D. Bloom, Jones, Van Reenen, and Webb (2020) show empirical

evidence for a steady decline in R&D productivity over the course of the 20th century. As ideas are getting

harder to find, sustaining a constant economic growth rate has required a simultaneous increase in research

inputs. Our quantitative results suggest that the cost of R&D has been increasing since the late 1970s for

both small and superstar firms.

Another important trend over the last decades in the US relates to the evolution of factor shares. In

particular, the share of income paid to workers has steadily decreased over the last decades as highlighted

in, among others, Karabarbounis and Neiman (2013) and Elsby, Hobijn, and Şahin (2013). At the same

time, the profit share has followed an opposite trajectory (Barkai (2020)). A large literature has highlighted

several potential sources for the decrease in the labor share such as technological change and automation

(see, for instance, Zeira (1998), Acemoglu and Restrepo (2018), Martinez (2019)), globalization (Elsby,

Hobijn, and Şahin (2013)), the decline in the relative price of capital (Karabarbounis and Neiman (2013)),

increased cost of housing (Rognlie (2015)) or a rise in productivity dispersion (Gouin-Bonenfant (2022)).

Barkai (2020) and De Loecker, Eeckhout, and Unger (2020) relate the decrease in the labor share to the

rise in profitability and markups. Autor, Dorn, Katz, Patterson, and Van Reenen (2020) and Kehrig and

Vincent (2021) attribute this trend to the rise of superstar firms which tend to display high markups and

low labor shares. Our model is also able to generate a decline in the labor share over the same time period.

The paper is organized as follows: In Section 2, we introduce our new framework and derive equilibrium

conditions. We also discuss non-stationary equilibria and the social planner’s problem. In Section 3, we

discuss the empirical relationship between competition and innovation that is used to discipline our

estimation. We also estimate the model. Section 4 describes some properties and new features of our

model. Section 5 applies our new framework to the study of the sources and consequences of recent

macroeconomic trends in the US, especially related to the rise in market concentration and markups. We

further validate the model in Section 6 and check its robustness in Section 7. Section 8 concludes.
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2 Model

2.1 Environment

Preferences Time is continuous and indexed by t ∈ R+. The economy is populated by an infinitely-lived

representative consumer who discounts the future at rate ρ > 0. The representative consumer maximizes

lifetime utility:

U =
∫ ∞

0
e−ρt ln(Ct) dt (1)

where Ct is consumption of the final good at time t, the price of which is normalized to one.

The household inelastically supplies one unit of labor in exchange for an endogenously determined

wage rate wt. Households own all the assets in the economy and face the following budget constraint:

Ȧt = rt At + wt − Ct (2)

where At is household wealth and rt is the rate of return on assets.

Final Good Production The final good Yt is produced competitively using inputs from a measure one of

industries:

ln (Yt) =
∫ 1

0
ln
(
yjt
)

dj (3)

where yjt is production of industry j at time t.

Industry Production Each industry is populated by an endogenous number of superstar firms (Njt ∈
{1, ..., N̄}), each producing a differentiated variety, as well as by a competitive fringe composed of a mass

mjt of small firms producing a homogeneous good (small firm k in the fringe of industry j at time t produces

yckjt). Given that there is a continuum of small firms and their products are homogeneous, each small firm

in the competitive fringe is a price taker.18 Superstars compete in quantities. In particular, we allow for

strategic interaction among superstars as variety production is the result of a static Cournot game. Total

production of industry j at time t is given by:

yjt =

(Njt

∑
i=1

y
η−1

η

ijt + ỹ
η−1

η

cjt

) η
η−1

(4)

where yijt is the production of superstar firm i in industry j at time t, ỹcjt =
∫

Fjt
yckjt dk is the production of

the competitive fringe in industry j at time t, Fjt is the set of small firms in the fringe in industry j at time t
and η > 1 is the elasticity of substitution between varieties.

18For a discussion of the importance and interpretation of the competitive fringe, see Section J in the Revision Appendix.
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Variety Production Superstar firms in each industry produce their own variety using a linear production

technology in labor:

yijt = qijtlijt (5)

where qijt is the productivity of superstar firm i in industry j at time t and lijt is labor.

Similarly for every small firm k in the competitive fringe:

yckjt = qcjtlckjt (6)

We assume that each small firm in the fringe in a given industry has the same productivity qcjt. Superstar

firms within each industry differ according to their level of productivity which can be built over time

through R&D and innovation.

R&D and Innovation Each superstar can perform R&D to improve the productivity of its variety. To

generate a Poisson rate zijt of success in R&D, firm i must pay a cost in units of the final good equal to:

Rijt = χzϕ
ijtYt. (7)

where ϕ is the superstar R&D cost convexity parameter with ϕ > 1, and χ > 0 is the scale parameter.

If a superstar successfully innovates at time t, its productivity is multiplied by (1 + λ). We assume

that the maximum number of productivity steps between any two superstar firms within an industry is

n̄ ≥ 1. For the competitive fringe, we assume that the relative productivity of small firms with respect to

the leader is a constant, denoted by ζ =
qcjt

qleader
jt

. Note that ζ can be any positive real number, and it should

be interpreted as the aggregate productivity of all firms in the fringe. In our model, the market share of

each small firm is infinitesimally small compared to any superstar firm. However, the fringe as a whole

has a positive market share, which is allowed to be larger in aggregate than the market share of some (or

all) superstar firms producing a differentiated good. This implies that superstar firms in our model are

characterized by higher productivity and larger market shares than every single small firm in equilibrium,

but collectively, the small firms matter.19

Entry and Exit of Superstar Firms At any time t, each small firm k in the competitive fringe can generate

a Poisson arrival density Xkjt of entry into superstar firms when Njt < N̄. The associated R&D cost is given

by

Re
kjt = νXϵ

kjtYt. (8)

where ϵ is the small firm R&D cost convexity parameter with ϵ > 1, and ν > 0 is the scale parameter.

Because all small firms are homogeneous within an industry, they all perform the same level of

innovation in equilibrium. We can rewrite the industry level Poisson rate of innovation Xjt =
∫

Xkjtdk =

mjtXkjt and the industry level R&D expenditures of small firms Re
jt = mjtRe

kjt.

19See Section J in the Revision Appendix for a more detailed discussion of the competitive fringe assumption.
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When a small firm successfully innovates, it becomes a superstar, and the number of superstar firms

in the industry is increased by one unless the number of firms in the industry is already equal to N̄, in

which case entry is not allowed. The new entrant is assumed to enter as the smallest superstar firm in

the industry, i.e., it is assumed to have a productivity level n̄ steps below the leader. In this sense, entry

into superstars in our model should be interpreted as a small firm becoming more productive and large

enough to strategically interact with other superstars.20 In particular, our assumptions imply that firms

more than n̄ steps below the leader in any industry are not large enough to be considered as having any

meaningful strategic interaction with other firms.21 Consistent with this interpretation of our model, a firm

endogenously loses its superstar firm status when it is n̄ steps below the industry leader and the leader

innovates. In that case, the number of superstar firms in the industry decreases by one.

Entry and Exit of Small Firms We also introduce entry into and exit from the competitive fringe, which

allows for a realistic mapping between small firm entry in the model and new business creation in the

data. This is different from the existing endogenous growth literature where entrants can immediately

become the leader in their industry, or large enough to interact strategically with the current leader. In this

sense, our model features a realistic firm life-cycle, where thousands of small firms enter, but only a select

few become superstars, several years or even decades after entry. We assume an exogenous exit rate of

small firms equal to τ > 0. Regarding entry, there is a mass one of entrepreneurs who can pay a cost ψe2
t Yt

to generate a Poisson rate et of starting a new small firm. The new firms are randomly allocated to the

competitive fringe of an industry, which implies mjt = mt for all industries j. In order to keep the mass of

entrepreneurs unchanged, we assume that they sell their firm on a competitive market at its full value and

remain in the set of entrepreneurs.22

2.2 Equilibrium

Consumer’s problem Household lifetime utility maximization delivers the standard Euler equation:

Ċt

Ct
= rt − ρ. (9)

Final Good Producers The final good is produced competitively. The representative final good producer

chooses the quantity of each variety in each industry which maximizes profit:

max
[{yijt}

Njt
i=1,ỹcjt]

1
j=0

exp

(
η

η − 1

∫ 1

0
ln

[Njt

∑
i=1

y
η−1

η

ijt + ỹ
η−1

η

cjt

]
dj

)
−
∫ 1

0

(Njt

∑
i=1

pijtyijt + pcjtỹcjt

)
dj. (10)

20A breakthrough innovation by small firms represents a jump in individual productivity. However, the resultant increase in
productivity is different from λ, which naturally calls for different R&D cost functions for small firms and the superstars. See
Section J in the Revision Appendix for a discussion of small firms’ productivity.

21In the estimated model, n̄ is chosen large enough such that the largest superstars that we stop keeping track of are strictly
smaller than 4/10,000 of the leader in terms of revenue and profit in all industry-states. Keeping track of these firms would
decrease the profits of the remaining superstars by strictly less than 3/10,000, and this would not noticeably change the results.

22This is without loss of generality. Alternatively, we could have assumed that, upon new business creation, successful
entrepreneurs are replaced by new entrepreneurs. This alternative assumption delivers exactly the same observed equilibrium,
because all entrepreneurial profits accrue to the representative household, which would remain the same regardless of which
assumption is chosen.
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where pijt (pcjt) is the price of variety i (the competitive fringe variety) in industry j at time t. This leads to

the following inverse demand function:

pijt =
y
− 1

η

ijt Yt

∑
Njt
k=1 y

η−1
η

kjt + ỹ
η−1

η

cjt

(11)

and
yijt

ykjt
=

(
pkjt

pijt

)η

(12)

where yijt should be replaced by ỹcjt for the competitive fringe.

Variety Producers We assume that superstar firms within the same industry compete à la Cournot. Each

firm maximizes profit:

max
yijt

pijtyijt − wtlijt = max
yijt

y
η−1

η

ijt Yt

∑
Njt
k=1 y

η−1
η

kjt + ỹ
η−1

η

cjt

−
wtyijt

qijt
. (13)

This delivers the following best response functions for superstar firms:

yijt =

η − 1
η

qijt
∑k ̸=i y

η−1
η

kjt + ỹ
η−1

η

cjt[
∑

Njt
k=1 y

η−1
η

kjt + ỹ
η−1

η

cjt

]2
Yt

wt


η

(14)

=
η − 1

η
qijt

∑k ̸=i

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η[

∑
Njt
k=1

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

]2
Yt

wt
(15)

The total production of the competitive fringe is given by:

ỹcjt = qcjt

Yt
wt

∑
Njt
k=1

ykjt
ỹcjt

η−1
η + 1

(16)

Relative production between each superstar variety and the competitive fringe within the industry can

then be written as:

(
yijt

ykjt

) 1
η

=
qijt

qkjt

∑l ̸=i

(
yl jt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

∑l ̸=k

(
yl jt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

(17)
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(
yijt

ỹcjt

) 1
η

=
η − 1

η

qijt

qcjt

∑l ̸=i

(
yl jt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

∑
Njt
l=1

(
yl jt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

. (18)

For each industry j, this is a system of Njt equations and Njt unknown production ratios which can be

solved given relative productivities within the industry.

We can further derive variety prices (pijt) and profits before R&D expenditures (πijt) which only depend

on relative productivities within the industry:

pijt =
η

η − 1

∑
Njt
k=1

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

∑k ̸=i

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

wt

qijt
(19)

πijt =
Yt[

∑
Njt
k=1

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

]2

η + ∑k ̸=i

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

η
(20)

Firms charge varying markups (Mijt) over marginal cost that depend on the number of competitors as

well as their relative productivities:

Mijt =
η

η − 1

∑
Njt
k=1

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

∑k ̸=i

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

(21)

Superstar Value Function and R&D Decision Static production decision, markups, and profits within

each industry only depend on the number of superstars, and the distribution of their relative productivities.

In other words, the relevant state variables for a firm i in industry j at time t can be summarized by

the vector of the number of productivity steps between superstar firm i and every other superstar firm

k ∈ {(1, 2, ..., Njt)\{i}} in the industry. Letting nk
ijt ∈ {−n̄,−n̄ + 1, ..., n̄ − 1, n̄} be the number of steps by

which firm i in industry j leads firm k at time t, the relevant state variables for firm i in industry j at time t
are given by the vector nijt = {nk

ijt}k ̸=i and Njt = |nijt|+ 1.23

Henceforth, we drop the time subscripts unless otherwise needed. A superstar firm i chooses an

23We can rewrite the relative productivity of firm i and k as qijt
qkjt

= (1 + λ)nk
ijt .
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innovation rate (zi) to maximize the value of the firm given by:

rV(ni, N) = max
zi

π(ni, N)− χzϕ
i Y

+zi

[
V(ni\{nk

i = n̄}+ 1, N − |{nk
i = n̄}|)− V(ni, N)

]
+ ∑

k:nk
i =−n̄

zkj(0 − V(ni, N))

+ ∑
k:nk

i ̸=−n̄

zkj

[
V(ni\{nk

i } ∪ {nk
i − 1}\{nl

i = n̄ + nk
i }, N − |{nl

i = n̄ + nk
i }|)− V(ni, N)

]
+Xj [V(ni ∪ {min {n̄, n̄ + min(ni)}}, min(N + 1, N̄))− V(ni, N)] + V̇(ni, N) (22)

The first line is the flow profit minus the cost of R&D. The second line is the change in firm value due

to a successful innovation by firm i which happens with Poisson rate zi. If firm i innovates, it increases its

lead over any other firm by one. Any firm n̄ productivity steps below firm i exits the set of superstars. The

third line corresponds to the change in value due to endogenous exit which arises if one of the industry

leaders is n̄ steps ahead of firm i and innovates.

The fourth line comes from any other firm (not leading i by n̄) innovating. In that case, the lead of

firm i with respect to the innovating firm decreases by one. In addition, if the innovating firm k is also

leading any other firm l by n̄ (which happens if nl
i − nk

i = n̄), firm l exits. The first term in the fifth line is

the effect of firm entry on the value of firm i. In that case, the entrant starts n̄ productivity steps below the

industry leader. The second term on the same line is the growth in firm value.

We can guess and verify that, in a balanced growth path (BGP), V(ni, N) = v(ni, N)Y. In that case,

V̇(ni, N) = gv(ni, N)Y (where g is the growth rate of Y). Using equation (9), we can write:

ρv(ni, N) = max
zi

π(ni, N)

Y
− χzϕ

i

+zi

[
v(ni\{nk

i = n̄}+ 1, N − |{nk
i = n̄}|)− v(ni, N)

]
+ ∑

k:nk
i =−n̄

zkj(0 − v(ni, N))

+ ∑
k:nk

i ̸=−n̄

zkj

[
v(ni\{nk

i } ∪ {nk
i − 1}\{nl

i = n̄ + nk
i }, N − |{nl

i = n̄ + nk
i }|)− v(ni, N)

]
+Xj [v(ni ∪ {min {n̄, n̄ + min(ni)}}, min(N + 1, N̄))− v(ni, N)] . (23)

The optimal level of innovation is given by:

zi =

{[
v(ni\{nk

i = n̄}+ 1, N − |{nk
i = n̄}|)− v(ni, N)

]
χϕ

} 1
ϕ−1

. (24)

Notice that the optimal innovation zi depends on the innovation choices of all other firms in the same

industry across all possible future histories. The innovation choices of other firms affect the value function

determined by the Hamilton-Jacobi-Bellman equation (23). The value function, in turn, determines the

innovation choice zi. This introduces dynamic strategic interactions, where innovation policies of firms are

functions of others’ innovation policies. We focus on the Markov Perfect equilibrium at the intersection of
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all firms’ best response functions, as is common in step-by-step innovation models such as Aghion, Harris,

Howitt, and Vickers (2001).

Small Firm Innovation and Entry into Superstar Firms Since relative sales and innovation policies

only depend on pairwise productivity differences and the number of firms in the industry, we can define

Θ = (N, n⃗) as the state of the industry with N ∈ {1, ..., N̄} being the number of superstars in the industry

and n⃗ ∈ {0, ..., n̄}N−1 denoting the number of steps followers are behind the leader (in ascending order).

We let f (Θ) = 1
η−1 ln

(
∑

Nj
i=1

(
yij
ycj
(Θ)

) η−1
η
+ 1

)
and define pli(Θ) as the arrival rate of a leader innovation

and p(Θ, Θ′) as the instantaneous flows from state Θ to Θ′. In each industry j (with Nj < N̄), each small

firm in the competitive fringe can perform R&D. All small firms within an industry are symmetric and

choose R&D investment to maximize:

rVe(Θj) = max
Xkj

XkjV({ñj − n̄} ∪ {−n̄}, Nj + 1)− τVe(Θj)− νXϵ
kjY

+∑
Θ′

p(Θj, Θ′)(Ve(Θ′)− Ve(Θj)) + V̇e(Θj) (25)

where Ve(Θj) is the value of a small firm in industry j and ñj = nkj where k denotes a productivity leader

in industry j.24

Guessing and verifying that, in a BGP, Ve(Θj) = ve(Θj)Y, we can rewrite:

(ρ + τ)ve(Θj) = max
Xkj

Xkjv({ñj − n̄} ∪ {−n̄}, Nj + 1)− νXϵ
kj

+∑
Θ′

p(Θj, Θ′)(ve(Θ′)− ve(Θj)) (26)

The optimal innovation intensity by a small firm in industry j is then:

Xkj =

(
v({ñj − n̄} ∪ {−n̄}, Nj + 1)

νϵ

) 1
ϵ−1

(27)

Plugging in the optimal solution, the normalized value of a small firm is calculated as

ve(Θj) =
1

ρ + τ

[(
1 − 1

ϵ

)
v({ñj − n̄} ∪ {−n̄}, Nj + 1)

ϵ
ϵ−1

(νϵ)
1

ϵ−1
+ ∑

Θ′
p(Θj, Θ′)(ve(Θ′)− ve(Θj))

]
(28)

Entrepreneurs and Entry into the Competitive Fringe There is a mass one of entrepreneurs in the

economy who can pay a cost ψe2Y to create a Poisson rate e of becoming a small firm in a randomly selected

industry. We assume that a successful entrepreneur immediately sells the small firm in a competitive

market. The expected selling price of the new small firm of a successful entrepreneur is equal to:

24Note that we use
∫

k=i Ve
k (Θj)dk = 0 in the first term, i.e., the value of the small firm is insignificant compared to the value of

the superstar firm it becomes, since it is of mass zero in the competitive fringe.
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W = ∑Θ Ve(Θ)µ(Θ), where µ(Θ) is the mass of industries of type Θ.25 The value of being an entrepreneur

(S) can be written as:

ρS = max
e

−ψe2Y + eW (29)

Guessing and verifying that, in a BGP, S = sY, we obtain that:

e =
W

2ψY
=

∑Θ ve(Θ)µ(Θ)

2ψ
(30)

which implies:

s =
[∑Θ ve(Θ)µ(Θ)]2

4ψρ
(31)

In a stationary equilibrium, entry into the competitive fringe equals exit from the competitive fringe

which means:

e = τm (32)

Combining equations (30) and (32), we get an equation that pins down the value of m as:

m =
∑Θ ve(Θ)µ(Θ)

2ψτ
(33)

Equilibrium Definition We focus on the unique Markov-Perfect Equilibrium of our economy. An

equilibrium is defined by a set of allocations {Ct, Yt, yijt, yckjt}, policies {lijt, lckjt, zijt, Xkjt, et}, prices

{pijt, pcjt, wt, rt}, the number of superstars in each industry Njt, a mass of small firms mt, a set of vectors

{nijt} that denote the relative productivity distance between firm i and every other firm in the same

industry j at time t, such that, ∀t ≥ 0, j ∈ [0, 1], i ∈ {1, ..., Njt}:

(i) Given prices, final good producers maximize profit.

(ii) Given nij and Njt, superstars choose yijt to maximize profit.

(iii) Given prices, small firms in the competitive fringe choose yckjt to maximize profit.

(iv) Superstar firms choose innovation policy zijt to maximize firm value.

(v) Small firms choose innovation policy Xkjt to maximize firm value.

(vi) Entrepreneurs choose et to maximize profit.

(vii) The real wage rate wt clears the labor market.

(viii) Aggregate consumption Ct grows at rate rt − ρ.

(ix) Resource constraint is satisfied: Yt = Ct +
∫ 1

0 ∑
Njt
i=1 χzϕ

ijtYt dj +
∫ 1

0 mtνXϵ
kjtYt dj + ψe2

t Yt.
25We can show that the expected value of ∑Θ′ p(Θ, Θ′)(Ve(Θ′)− Ve(Θ)) in a stationary equilibrium is equal to zero (see

Proposition 1 in Appendix A.2). W is thus equal to 1− 1
ϵ

ρ+τ

∫ 1
0 V({ñj−n̄}∪{−n̄},Nj+1)

ϵ
ϵ−1 dj

(νϵ)
1

ϵ−1
.
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Growth Rate and Balanced Growth Path We can derive the growth rate of the economy at time t (gt)

as:26

gt = −gω,t + ∑ [plit(Θ) ln(1 + λ)] µt(Θ)

+∑
Θ

∑
Θ′

[
ft(Θ′)− ft(Θ)

]
pt(Θ, Θ′)µt(Θ) (34)

where gω,t is the growth rate of the relative wage, ωt =
wt
Yt

, the second term comes from the growth rate of

the industry leaders, and the third term accounts for production reallocation as industries move between

states. In a balanced growth path with time-invariant distribution over Θ, gω,t = 0, µt(Θ) = µ(Θ) and:

g = ∑ [pli(Θ) ln(1 + λ)] µ(Θ) (35)

which corresponds to the expected growth rate of industry leaders’ log productivity. In other words, long-

run growth is driven by industry leaders pushing the technological frontier in their industry. Other firms’

(superstars and small firms) decisions influence the growth rate of the economy by affecting the incentives

for industry leaders to invest in innovation, pli(Θ), and the stationary distribution across industry states,

µ(Θ), which is a function of the innovation decisions by all firms in all industries through their contribution

to the instantaneous flow matrix p(Θ, Θ′).27

2.3 Non-Stationary Equilibria and Transitional Dynamics

Most of the discussion above has focused on stationary (balanced growth path) equilibria. Despite the

richness of our model in terms of heterogeneity and dynamics, it is possible to solve for non-stationary

equilibria as well. Computing a non-stationary equilibrium is more complex than in standard macroeco-

nomic models. The relevant state variables to keep track of are (1) the average log productivity level of

industry leaders Qt =
∫

ln qleader
jt dj, (2) the mass of small firms mt, and (3) the industry-state distribution

µt(Θ), which is time-varying in a non-stationary equilibrium. Given our choices for n̄ and N̄ in our baseline

estimation, this means solving for a non-stationary equilibrium starting from arbitrary initial conditions

(Q0, m0, µ0(Θ)) requires finding the complete time paths of 86 continuous state variables under rational

expectations, which might seem daunting at first.28 Despite the complexity, the tractability of our frame-

work and our choice to use a continuous-time setting render the computation of non-stationary equilibria

feasible. This is accomplished without any deviation from the assumption of rational expectations. For

brevity, the full details including the algorithm are relegated to Section A.9 of the Appendix.

We can distinguish two categories of decisions in the model. For a given industry state Θ, within-

industry relative labor demand, production, prices, markups, and profits are time-invariant due to the static

nature of product market competition in a Markov Perfect equilibrium. So it suffices to solve for every

possible industry equilibrium once. However, the innovation decisions of both superstars and small firms,

as well as the new business creation decision of the entrepreneurs, depend on firm values, which in turn

26See Appendix A.1 for the full derivation.
27We provide an algorithm that can be used to solve for stationary equilibria in Section A.8 of the Online Appendix, which

further elucidates the relationship between p(Θ, Θ′) and µ(Θ) in a stationary equilibrium.
28For comparison, computing non-stationary equilibria in the canonical neoclassical growth model requires finding the complete

time path of a single continuous state variable, the capital stock Kt.
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rely on the future predicted time paths of Qt, mt, and µt(Θ). These endogenous objects, in turn, depend

on the optimal innovation and business creation decisions at every point in time. Their joint determination

is what pins down the unique transition path towards the stationary equilibrium implied by the parameter

values.

Of particular interest are the properties of non-stationary equilibria that initially start from a stationary

equilibrium, and arise as a result of shocking the values of a subset of parameters. In such non-stationary

equilibria, the speed at which important variables converge to their new stationary equilibrium values is

important. In our quantitative experiments, we observe that firm value functions and innovation policies

are quick to respond, in many cases jumping to the immediate vicinity of their long-run values. The state

variables mt and µt(Θ) are the slow-moving objects. As discussed earlier, the growth rate gt of the economy

given in equation (34) depends both on leader innovation rates plit(Θ), and the distribution of industries

across industry states µt(Θ). The prior reacts immediately, but the latter adjusts slower, since endogenous

changes to the market structure take time. As a consequence, the growth rate of the economy can jump

to a new level in response to shocks in parameter values, but it can take a while to reach its eventual

stationary value.29

2.4 Computing Social Welfare

To calculate welfare, we need to compute the consumption stream of the representative household. In

a non-stationary equilibrium, the time path of consumption needs to be directly calculated.30 In a balanced

growth path equilibrium, two components are sufficient: the growth rate of consumption g, and the initial

consumption level C0. This, in turn, requires us to compute initial output Y0 and aggregate spending on

R&D and new business creation. The level of initial output Y0 is given by:

ln(Y0) =
∫ 1

0
ln qleader

j0 dj + ln ζ − ln ω + ∑ f (Θ)µ(Θ) (36)

All terms are time-invariant except for the average log productivity level of the industry leaders at time

0, given by Q0 =
∫ 1

0 ln qleader
j0 dj. When comparing welfare across economies, we can fix this term to be

equal to zero in all economies without loss of generality.31 Next, initial consumption C0 is given by

C0 = Y0
C0

Y0
= Y0

(
1 −

∫ 1

0

Nj0

∑
i=1

χzϕ
ij0 dj −

∫ 1

0
m0νXϵ

kj0 dj − ψe2
0

)
(37)

where the second factor is the share of output left for consumption after R&D and entrepreneur entry costs

are subtracted. Then, the welfare of the representative household in a BGP equilibrium can be calculated

as:

W =
∫ ∞

0
e−ρtln(Ct)dt =

ln(C0)

ρ
+

g
ρ2 (38)

29The first and the third terms in equation (34) are also slow-moving, but their quantitative significance is dwarfed by that of
the second term by several orders of magnitude.

30See Section A.9.1 in the Appendix for details.
31In other words, we keep the initial frontier technology level the same across counterfactual economies.
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The model allows for a closed-form decomposition of changes in welfare across two economies as

follows:

∆W =
1
ρ

[
∆ ln ζ − ∆ ln ω + ∆ ∑ f (Θ)µ(Θ) + ∆ ln

(
C
Y

)]
+

1
ρ2 ∆g (39)

For two economies A and B, we can define a consumption equivalent welfare measure (ϖ) which

corresponds to the percentage increase in lifetime consumption that an agent in economy A would need to

be indifferent between being in economy A and B:

WB =
ln(CA

0 (1 + ϖ))

ρ
+

gA

ρ2 (40)

Solving for ϖ, we get:

ϖ = exp
((

WB − gA

ρ2

)
ρ − ln(CA

0 )

)
− 1 (41)

2.5 Social Planner’s Problem

Our model features several inefficiencies that interact, such as markup dispersion, R&D externalities,

and business stealing. Consequently, decentralized equilibria are generically suboptimal. One important

question is if the static inefficiencies due to oligopolistic competition and positive markups are quantitatively

more or less important than the dynamic inefficiencies due to the positive knowledge spillovers and negative

business stealing effects inherent in innovation decisions. This is a quantitative question that necessitates

solving the dynamic social planner’s problem, so that we can compare decentralized equilibria with

allocations that shut down static and/or dynamic inefficiencies in the economy.

The social planner’s problem can be solved in two parts. First, for a given distribution over industry

states, the social planner chooses the optimal labor allocation that maximizes output: i.e., the allocation

that would be obtained in the absence of market power and heterogeneous markups in equilibrium. The

second part of the planner’s problem consists of optimally choosing dynamic innovation allocations for all

small firms and superstars in every industry state, and the new business creation rate for entrepreneurs. In

doing so, the planner also chooses the implied stationary distribution over industry states µ(Θ) and the

stationary value of the mass of small firms m, while taking knowledge externalities into account. Since

innovation and new business creation both use the final good in the economy, there is also a trade-off

between how much resources to spend on improving productivity growth versus current consumption.

In Section A.5 of the Appendix, we provide a detailed description of the social planner’s problem as well

as its solution. We simplify this complex problem substantially, but the last step still requires solving for

the optimal values of a large vector of positive scalars. Nevertheless, solving the social planner’s problem is

still feasible. We solve and discuss the planner’s allocation for our estimated model in Section 4.4.
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3 Data and Estimation

In this section, we start by discussing the relationship between competition and innovation in the data

and our model. Next, we estimate our model using moments for the whole sample going from 1976 to

2004. We describe our estimation procedure, and use this estimated model to highlight its properties in

Section 4. We also split our full sample into two periods (referred to as early and late periods) by choosing

the end of 1994 as the mid-point, and repeat the same estimation using these two subsamples. The two

estimated stationary equilibria are used in the quantitative application of our model in Section 5 which

attempts to disentangle the economic mechanisms underlying the various macroeconomic trends observed

in the United States during this time period.

3.1 Relationship Between Competition and Innovation in the Data

Theoretically, the relationship between competition and innovation is ambiguous. Intense competition

from peers can encourage a firm to innovate to escape competition, which would imply a positive

relationship. At the same time, competition pushes down profitability, which discourages innovation – the

so-called Schumpeterian effect.

Our theoretical framework allows the relationship between competition and innovation to be non-

monotonic within and across industries. Our model can generate a nonlinear relationship between market

concentration and industry innovation, as well as market share and firm innovation without any ex-ante

heterogeneity.

Thanks to this new feature of our framework, we can require our model to replicate the empirically-

observed relationship between competition and innovation, which helps us discipline the counterfactual

model implications for innovation, economic growth, and welfare. In other words, using our framework,

we can replicate the whole nonlinear relationship between competition and innovation within and across

industries, which creates a much tighter link between the model and the data compared to only matching

the aggregate growth rate and R&D intensity.

We conduct an empirical analysis to investigate the aforementioned non-linear relationship between

competition and innovation within and across industries.32 We use the USPTO Utility Patent Grant Data

obtained from the NBER Patent Database Project, which covers the years 1976-2006, and rely on Compustat

North American Fundamentals Annual for financial statement information of US-listed firms for the same

years. Following a dynamic assignment procedure, we link the two data sets. We relegate the details to

Section A.3 in the appendix. The stylized facts can be summarized as follows:

1. Market concentration and industry innovation: As previously documented in Aghion, Bloom,

Blundell, Griffith, and Howitt (2005), the empirically-observed relationship between industry-level

innovation and competition can exhibit an inverted-U shape. We confirm this finding using our

data, where we document a robust inverted-U shape relationship between market concentration and

several different innovation metrics.
32We should stress that we do not claim that a causal relationship exists. This exercise documents correlation patterns that we

would like our model to be able to reproduce. Market concentration and innovation are both endogenous variables in our model
as well.
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2. Relative sales and firm innovation: We also investigate the within-industry relationship between

competition and innovation. We document a robust inverted-U relationship between firm-level

innovation and relative sales. This is consistent with other studies such as Hashmi and Biesebroeck

(2016).

To establish the robustness of our results, we use several different metrics to capture innovation (patent

count, patent quality, tail innovations, originality, generality, R&D expenses) as well as investments that

are potentially correlated with innovation (physical capital investment, advertising), and direct measures

of firm growth (sales growth, employment growth, asset growth). We confirm the robustness of our

results with all the variables across numerous specifications outlined in the appendix. We also conduct a

hypothesis test developed by Lind and Mehlum (2010) to test for the existence of an inverted U, which is

summarized in Section A.3.4.

3.2 Estimation

Ten parameter values must be determined: ρ, λ, η, χ, ν, ζ, ϕ, ϵ, ψ, τ. The consumer discount rate ρ is set

to 0.04, which implies a real interest rate of 6% when the growth rate is 2%.33 The rest are structurally

estimated following a simulated method of moments approach.34 Aggregate moments in the model are

mapped to aggregate moments in the data. Since the Compustat database consists of large US-listed firms,

we map the moments obtained using the Compustat sample to moments obtained from superstar firms in

our model. In this section, we discuss the data moments we use to discipline the parameter values, and

provide the relevant data sources for each of these moments.35

The success of the SMM estimation depends on model identification, which requires that we choose

moments that are sensitive to variations in the structural parameters. All these parameters are jointly

estimated to match the following targeted data moments: the growth rate of real GDP per capita, aggregate

R&D intensity, labor share, firm entry rate, (sales-weighted) average markup,36 within-year standard

deviation of markups, the linear term and the top point obtained from the intra-industry regression of a

firm’s innovation on its relative sales,37 average profitability, average relative quality of the leader, and its

standard deviation across industries. We discuss them below:

1. Growth rate: To discipline output growth in our model, we obtain the annual growth rate of real

GDP per capita from the US Bureau of Economic Analysis, and calculate the geometric averages for

each sub-sample.
33We target a relatively high real interest rate to remain conservative. For instance, a lower real interest rate of 4% would halve

the implied discount rate to ρ = 0.02. This would double the welfare contribution of the output growth rate relative to that from
the initial consumption level, significantly amplify the dynamic welfare gains, and further strengthen our findings.

34See Section A.4.2 in the Online Appendix for the objective function (equation (46)) and the algorithm used for estimation.
35A more detailed description of the data moments and the estimation procedure is provided in Appendix A.4. In particular,

we clarify the details regarding each moment, as well as the data sources the moments are obtained from, in Section A.4.1. In
Section A.4.2, we discuss which moments help identify which parameters.

36In Section 7.5, we re-estimate the model using cost-weighted markups from Edmond, Midrigan, and Xu (2023), and the
results are found to be similar. Motivated by Bond, Hashemi, Kaplan, and Zoch (2021), we also conduct another re-estimation
that does not rely on any markup-based moments obtained through the De Loecker and Warzynski (2012) methodology. This
strengthens our results.

37Matching the documented inverted U relationship is crucial. In the Revision Appendix, we illustrate that failing to capture this
relationship (for instance, by producing a U-shaped curve instead of an inverted U) can reverse the growth and welfare results in
the counterfactual experiments.
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2. Labor share: We obtain the labor share estimates from Karabarbounis and Neiman (2013); in

particular the time series for corporate labor share (OECD and UN). For capital share, we rely on the

data from Barkai (2020).

3. R&D intensity: The data for aggregate R&D intensity is taken from the National Science Foundation,

who report total R&D expenditures divided by GDP.

4. Level and dispersion of markups: To discipline markups, we target the sales-weighted average

markup and the sales-weighted standard deviation of markups found in De Loecker, Eeckhout, and

Unger (2020).

5. Relationship between firm innovation and relative sales: As discussed earlier, replicating the

observed inverted-U relationship between competition and innovation helps us firmly discipline the

counterfactual implications of the model regarding economic growth and social welfare. To achieve

this, we target the relationship between firm innovation and relative sales. Innovation in the model

is measured as the Poisson arrival event of quality improvement, whereas it is measured as average

patent citations for each firm in the data. We normalize both by subtracting their means and dividing

by their standard deviation.

6. Average profitability: In the model, average profitability is calculated as static profit flow minus

R&D expenses divided by sales. In the data, it is defined as operating income before depreciation

divided by sales (OIBDP/SALE in Compustat.)

7. Level and dispersion of leader quality: We target the average relative quality of the leader in an

industry, and its standard deviation across all industries. In the model, quality is known. In the data,

we proxy quality by calculating the stock of past patent citations.

8. Firm entry: In our model, firm entry rate is defined as the entry rate of new small firms. We obtain

the data counterpart – the entry rate of new businesses – from the Business Dynamics Statistics (BDS)

database compiled by the US Census.

Panel A of Table 1 reports the values of the parameters, whereas Panel B provides an overview of the

values of the targeted moments in the data and the estimated model. The model tightly matches the

eleven data moments. The Jacobian matrix of the model moments with respect to the model parameters in

percentage terms is displayed in Table A3.

4 Model Properties

In this section, we use our estimated model for the whole sample to discuss its properties, and how it

relates to the typical Schumpeterian framework in the literature. We discuss how our model can generate

the empirically-observed inter-industry inverted-U relationship between industry innovation and market

concentration (untargeted), and the within-industry inverted-U relationship between firm innovation

and relative sales (targeted). We also discuss the new features of our model that deliver empirically-

consistent firm and industry dynamics, firm life cycles, industry-level market share distributions, and

market concentration.
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TABLE 1: BASELINE MODEL PARAMETERS AND TARGET MOMENTS

A. Parameter estimates

Parameter Description Whole sample Early sub-sample Late sub-sample

λ innovation step size 0.3126 0.3006 0.3255
η elasticity within industry 6.6800 19.9413 6.6290
χ superstar cost scale 120.5659 107.9854 72.7328
ν small firm cost scale 3.4046 1.3946 2.4152
ζ competitive fringe ratio 0.5912 0.6054 0.5306
ϕ superstar cost convexity 3.8711 3.8367 3.6366
ϵ small firm cost convexity 2.6594 2.8329 2.3525
τ exit rate 0.1151 0.1144 0.0964
ψ entry cost scale 0.0149 0.0088 0.0213

B. Moments

Whole sample Early sub-sample Late sub-sample
Target moments Data Model Data Model Data Model

growth rate 2.20% 2.20% 2.19% 2.19% 2.31% 2.31%
R&D intensity 2.43% 2.02% 2.40% 2.07% 2.50% 2.50%
average markup 1.3498 1.3462 1.3014 1.3014 1.4442 1.4441
std. dev. markup 0.346 0.387 0.306 0.325 0.421 0.452
labor share 0.652 0.628 0.656 0.628 0.644 0.610
firm entry rate 0.115 0.115 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.629 0.726 0.449 0.683 0.631 0.783
top point (intra-industry) 0.505 0.448 0.443 0.462 0.515 0.448
average profitability 0.144 0.176 0.136 0.162 0.152 0.210
average leader relative quality 0.749 0.642 0.751 0.607 0.746 0.678
std. dev. leader relative quality 0.223 0.161 0.224 0.140 0.222 0.165

Notes: The estimation is done with the simulated method of moments. Panel A reports the estimated parameters. Panel B reports
the simulated and actual moments.
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4.1 Policy Functions

Figure 1 displays the optimal innovation policy functions followed by the firms in the estimated

equilibrium obtained by targeting data moments for the whole sample. The left panel of Figure 1 depicts

the innovation policy of a firm in an industry with two superstar firms. The relevant state variable is how

many steps the current firm is ahead of its competitor, where negative numbers indicate that the current

firm is lagging behind the competing firm. We see that the incentive to innovate is increasing from -5 to -1,

and it is decreasing from -1 to 5. This means that a two-firm industry experiences the highest amount of

superstar innovation when the two competing firms are very close to each other in terms of productivity

(neck-and-neck and one step difference.)

FIGURE 1: INNOVATION POLICY FUNCTION
Notes: This figure displays the optimal innovation policy functions followed by the firms in the estimated equilibrium obtained by
targeting data moments for the whole sample. The left panel of this figure depicts the innovation policy of a firm in an industry
with two superstar firms (N = 2). The right panel of this figure does the same for a firm in an industry with three superstar firms
(N = 3). The lead is defined as the number of steps the current firm is ahead of its competitor, where negative numbers indicate
that the current firm is lagging behind the competing firm.

The right panel of Figure 1 does the same for a firm in an industry with three superstar firms. This time

the state variable is two-dimensional, and the innovation decision of the firm is a function of how many

steps the current firm is ahead of both of its competitors. Since competitors that have the same relative

distance in terms of quality are identical, the two-dimensional surface is symmetric along the antidiagonal.

There are also some illegal states which cannot happen as we assume the maximum number of steps

between two firms cannot exceed n̄. These correspond to the two blue triangles at the top left and bottom

right corner, and should be ignored. Overall, the policy function shares some properties with the case for a

two-firm industry. In particular, along the antidiagonal where the two competitors have the same quality,

the innovation policy is once again increasing until the firms are close to being neck-and-neck, and then

decreasing.

Figure B1 in the Appendix is the case for a firm in an industry with four superstars. In this case, the

state variable is three-dimensional. Therefore, we split the innovation policy function into ten separate

subfigures constructed similar to the right panel of Figure 1, where each subfigure corresponds to the

fourth competitor being a certain number of steps behind the current firm. Note that there are more

illegal cases that arise whenever n4 ̸= 0 which are once again colored blue. Similar properties along the
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antidiagonal are observed.

4.2 Model-Implied Relationship Between Innovation and Competition

One key feature of our model compared to other models with endogenous markups is its ability to

deliver a hump-shaped relationship between innovation and competition at the industry level, which is

shown in the left panel of Figure 2.38 Each marker on the plot corresponds to the innovation choice of

a firm given a firm state. The horizontal axis depicts the relative sales of the firm compared to the total

sales of all superstars in the same industry. The legend for the figure clarifies the number of superstar firms

in the industry the observation is coming from. The blue curve is the quadratic fit to the observations.

We see the observations constitute an inverted-U shape both when they are all considered at the same

time, and also separately conditioning on a certain number of superstar firms. The innovation choices are

normalized by demeaning and dividing by the standard deviation. Each observation is assigned weights

based on their occurrence dictated by the time-invariant distribution of industry types µ(Θ). Likewise, the

right panel of Figure 2 depicts the same for R&D spending on relative sales. The overall shape looks similar,

but the differences are magnified as the innovation level increases, owing to the convexity of the superstar

innovation cost function.

FIGURE 2: INNOVATION, R&D EXPENSES, AND FIRM RELATIVE SALES
Notes: The left panel of this figure illustrates the model-implied relationship between firms’ innovation and relative sales, while
the right panel shows the model-implied relationship between R&D spending and relative sales. The figure is based on the whole
sample. The horizontal axis depicts the relative sales of the firm compared to the total sales of all superstars in the same industry.
Each marker on the plot represents the innovation choice (left panel) or R&D spending choice (right panel) of a firm for a specific
firm state. The innovation choices are normalized by demeaning and dividing by the standard deviation. N denotes the number
of superstar firms in the industry the observation is coming from. The blue curve is the quadratic fit to the observations.

Figure 3 shows the model-implied relationship between competition and innovation across industries.

We use the Herfindahl-Hirschman Index to measure market concentration.39 The figure shows that there

is an inverted-U relationship between an industry’s market concentration and its total innovation. The

vertical blue line corresponds to the top point of the quadratic polynomial fitted to the model-generated

38It is worth noting that the model is flexible enough to generate the opposite relationship under alternative parameter values,
i.e., a U-shape for the policy function, as well as a U-shape relationship between innovation and competition within and across
industries. Therefore, the inverted-U relationship is an estimation result rather than a model implication.

39Note that the market share percentage of each individual small firm in the competitive fringe is zero.
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data, whereas the vertical red line corresponds to the average HHI of industries in the economy, weighted

by their shares in the time-invariant industry state distribution µ(Θ). Note that this average is lower

than the top point. This reveals that the Schumpeterian creative destruction effect dominates the escape

competition effect for most industries in the estimated economy. This foreshadows our finding that a

change that increases market concentration would increase innovation overall. We would expect the

opposite to be true if the red line was to the right of the blue line.

FIGURE 3: INNOVATION AND HHI
Notes: This figure illustrates the model-implied relationship between competition and innovation across industries. The figure is
based on the whole sample. We measure market concentration using the Herfindahl-Hirschman Index. The figure reveals an
inverted-U relationship between an industry’s market concentration and its overall innovation. Each circle represents an industry
state. The circle’s color indicates the number of superstars in the industry, while its size signifies the share of that industry state in
the baseline invariant distribution. N denotes the number of superstar firms in the industry the observation is coming from. The
black curve provides a quadratic fit to the observations. The vertical blue line marks the top point of the quadratic polynomial
fitted to the model-generated data. In contrast, the vertical red line corresponds to the average HHI of industries in the economy,
weighted by their shares in the time-invariant industry state distribution.

It is worth mentioning that our model is able to generate this second relationship without explicitly

targeting the quadratic relationship in the estimation. Furthermore, our model generates the inverted U

without introducing any exogenous heterogeneity.40 This is different from recent models that endogenize

markups. In Schumpeterian models with a single active firm, all observations would be clustered at

1 for relative sales and HHI, implying no relationship. In step-by-step innovation models with perfect

substitution and Bertrand competition, there would be two points at 0.5 and 1 for relative sales, and 0.5

and 1 for HHI, which would imply a linear relationship. In models with exogenous productivity evolution,

we would get a flat line (no relationship). Finally, in models with innovation only at entry, there would

be a monotone relationship between competition and innovation at entry, the shape of which depends

on that of the cost function. After entry, there would be no relationship due to no incumbent innovation.

Our model’s ability to match this relationship aids in disciplining the counterfactual behavior of aggregate

productivity growth in response to endogenous changes in market concentration, which helps discipline

the estimated social welfare implications of increasing markups.

40The original inverted-U paper by Aghion, Bloom, Blundell, Griffith, and Howitt (2005) achieves this through the introduction
of exogenous collusion heterogeneity across industries.
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4.3 Model-Implied Market Share Distributions and Firm Dynamics

Though not targeted, our model generates realistic relative sales and concentration numbers unlike

Schumpeterian models with Bertrand competition and homogeneous goods. Industries in the United States

consist of thousands of firms on average. While superstar firms command a disproportionate share of the

market, the remaining small firms still collectively account for a significant portion of the market. Existing

Schumpeterian models feature at most two firms per industry and hence generate CR4 ratios of 100% in

every industry. Our model avoids this issue through two of our contributions: (1) allowing an endogenous

number of superstar firms and (2) introducing a competitive fringe that can collectively account for a large

market share in each industry, even though each fringe firm is infinitesimally small. Even in industries with

a single superstar firm, the competitive fringe ensures that the superstar captures only a fraction of the

market. Our estimated model generates an average CR4 ratio across industries of 46.7%, with a realistic

distribution across industries – 37.6% for the 25th percentile and 54.6% for the 75th percentile.41

In addition, the employment and sales growth profiles of individual firms in our model evolve slowly

over time, which fits the data better than the instantaneous jumps between 0%, 50%, and 100% of the

whole market observed in many models. Such abrupt changes in market shares are counterfactual. Our

model delivers realistic firm life cycles in comparison. Entrepreneurs create thousands of new small

businesses. Only a very small fraction of these small firms eventually succeed in becoming a superstar firm.

Those that become a superstar firm start out n̄ steps behind the industry leader in terms of productivity,

making them the smallest superstar in the industry. As time passes, if they succeed in their innovation

efforts, they can rise up in the ranking slowly over time. Their market share tracks their productivity

compared to their competitors, and it also changes only gradually as a result of their own innovation, or

that of their competitors. Figure 2 gives an indication of the large degree of market share heterogeneity

that our model can deliver. Finally, the introduction of entrepreneurs in the model also adds to the realistic

life cycle of firms and allows our model to generate an entry rate of small firms that is directly comparable

to the way entry rate is usually measured using BDS data.

4.4 Social Planner’s Allocations

In Section 2.5, we had discussed the social planner’s static and dynamic problems, and how they could

be solved. In this section, we apply the developed solution methods to solve for the social planner’s static

and dynamic allocations using the parameter values obtained from the whole sample estimation of our

model.42

The static problem involves finding the allocation of labor that maximizes (log) output in the economy,

given the productivity distribution [{qijt}
Njt
i=1, qcjt]

1
j=0. We take the initial productivities implied by the

stationary industry-state distribution µ(Θ) in the decentralized equilibrium, and solve this problem. The

social planner simply eliminates all markups observed in the decentralized equilibrium, which increases

initial output by 25.4% of its value. This large number is comparable to those reported in Baqaee and Farhi

(2020) and Edmond, Midrigan, and Xu (2023).

41These number match very well against the empirical CR4 estimates we obtain by combining Compustat data with industry
sales information from the Bureau of Economic Analysis. See Table L22 in the Revision Appendix for the exact figures.

42A full description of the results can be found in Appendix A.5.4.
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We then solve the (unconstrained) dynamic social planner’s problem, again using the same parameter

values. This time, the social planner not only eliminates all markups, but also chooses the small firm entry

rate, as well as every innovation decision by every firm in every industry simultaneously, taking all the

externalities into account, and cognizant of their effect on the stationary mass of small firms m and the

industry state distribution µ(Θ). The optimal allocation yields a growth rate of 5.6% per year, which is

more than double what is observed in the decentralized equilibrium. The consumption-equivalent welfare

gain obtained from switching to the first-best is found to be 115%, which is four times that of the gains

from eliminating static misallocation of labor due to markups. This means the dynamic inefficiency in the

estimated economy is much more severe than the static efficiency due to oligopolistic competition.

Finally, we study a constrained optimal allocation, where the planner cannot choose positive R&D for

large firms in single-superstar industries. In a decentralized equilibrium, single superstars do not perform

R&D as they have no incentive to do so. As a result, implementing the first-best allocation with taxes and

subsidies would require a 100% subsidy of R&D by large firms in single-superstar industries. Our constraint

is motivated by the severe implementation problems this would entail. Our results show this constrained

optimal allocation delivers a very large share of the welfare difference between the unconstrained first-best

and the decentralized equilibrium allocations, at 97.6%.

5 Application: Understanding the Structural Transition and the Rise in

Markups

As a quantitative application of our framework, we rely on the early (1976-1994) and late (1995-

2005) subsample estimations conducted in Section 3, and use the two estimated stationary equilibria

to disentangle the economic mechanisms underlying the various macroeconomic trends observed in the

United States during this time period.43 The estimated parameter values in the two sub-samples are quite

different, which captures the structural changes in the US economy throughout this time period. These

estimates are reported in Table 1.

5.1 Changes in Structural Parameters

The elasticity of substitution within an industry, η, decreases from 19.94 to 6.63.44 This parameter

primarily governs the degree of static product market competition between superstar firms, and the

significant decrease in its value indicates that superstar firms enjoy higher market power in the late

sub-sample. This is in line with the documented increase in market power over the last decades (see for

instance, De Loecker, Eeckhout, and Unger (2020)). At the same time, the ratio of the competitive fringe’s

productivity relative to the industry leader, ζ, decreases from 0.605 to 0.531. This parameter captures the

product market competition from non-superstar firms, and a decrease in its value indicates that superstar

firms can charge higher markups thanks to reduced competition. One potential factor behind this trend

43We extend the analysis to 2006-2016 in Section 7.1.
44In our model, the industry structure is endogenous, and therefore η is primarily identified by the dispersion of firm-level

markups rather than the average, along with average profitability. In monopolistic competition models, the reported change in the
value of η would imply an 11.9% increase in the average markup, whereas the change is only 0.24% in our model, as shown in
Section 5.2.1.
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could be the slowdown in technology diffusion from market leaders to followers as discussed in Akcigit

and Ates (2023).

If we turn to parameters that govern the innovation cost function of the superstars, we observe a

decrease in the scale parameter χ from 107.99 to 72.73, and the convexity ϕ from 3.84 to 3.64. The first

change reduces the cost of superstar innovation, whereas the second change allows innovation to be more

concentrated across firms, as it reduces the diminishing returns to innovation within a firm. Given other

parameter values, the decrease in ϕ also increases innovation costs on average. These changes in χ and ϕ

imply that the cost of a given level of innovation z is higher in the late period if z < 0.139, which is the

case for all firms in the model. The innovation scale parameter for small firm innovation, ν, increases from

1.39 to 2.42, and the convexity ϵ decreases from 2.83 to 2.35. Both changes increase the cost of innovation

for small firms, which reduces the entry rate of new superstar firms. Overall, these results are consistent

with ideas getting harder to find over time as highlighted in Bloom, Jones, Van Reenen, and Webb (2020).

Finally, the cost of new business entry rises as ψ increases from 0.88% to 2.13%. This rise in the entry

cost of entrepreneurs and the associated decline in the entry rate of small firms are in line with the overall

decline in business dynamism documented, for instance, in Decker, Haltiwanger, Jarmin, and Miranda

(2016).

5.2 Disentangling the Structural Transition

In order to better understand and disentangle the effects of the transition implied by the estimated

parameter values in the two sub-samples, we conduct counterfactual exercises where we investigate the

effects of each change separately. To do so, we compare the estimated late sub-sample economy against

counterfactual economies in which we set the values of selected parameters to their early sub-sample

estimates. These exercises illustrate how the economy would look like if there were no structural change in

a particular mechanism. This, in turn, allows us to understand which mechanisms are the primary drivers

of the time trends in important quantities such as the average markup, the labor share, output growth,

as well as their implications for social welfare. In other words, we use our model as a tool to uncover

how the structural parameters change over time, and establish which mechanisms induce the observed

macroeconomic changes, in what magnitude, and in which direction.

The results are presented in Table 2, where the first column displays the benchmark values of chosen

model moments in the late sub-sample. The last two columns of the bottom panel show the results of

changing all the parameters to their early period values to provide context. All the remaining columns

show how the moments change in each exercise. Below, we discuss these results in detail.

5.2.1 Competition from Superstars vs. Small Firms

We first look at what happens when we set the elasticity of substitution within an industry, η, to its

early period value. Even though the direct effect of the change is a decrease in the market power of the

superstar firms, average markup increases slightly by 0.24% of its value, due to the general-equilibrium

changes in the stationary distribution µ(Θ) towards higher markup industries. The reduction in market

power relatively favors the industry leaders who have the highest productivity. Consequently, the average

number of superstars per industry falls by 10.3%, and so does the initial output by 7.5%. There is a drop
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TABLE 2: DISENTANGLING THE STRUCTURAL TRANSITION

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.07% -10.39% 1.83% -20.99% 2.74% 18.28%
R&D intensity 2.50% 2.37% -5.07% 1.55% -37.68% 3.32% 33.02%
average markup 1.444 1.448 0.24% 1.320 -8.56% 1.450 0.39%
std. dev. markup 0.452 0.425 -6.01% 0.381 -15.74% 0.438 -3.25%
labor share 0.610 0.604 -1.06% 0.653 6.98% 0.605 -0.92%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.783 0.706 -9.94% 0.795 1.42% 0.838 7.01%
top point (intra-industry) 0.448 0.435 -2.91% 0.443 -1.01% 0.466 4.16%
avg. profitability 0.210 0.219 4.35% 0.166 -21.04% 0.209 -0.49%
avg. leader relative quality 0.678 0.720 6.18% 0.728 7.42% 0.569 -16.02%
std. dev. leader rel. quality 0.165 0.176 6.78% 0.181 9.40% 0.130 -21.06%

superstar innovation 0.169 0.145 -13.86% 0.129 -23.48% 0.230 36.16%
small firm innovation 0.019 0.011 -41.25% 0.011 -41.58% 0.052 175.60%
output share of superstars 0.516 0.549 6.25% 0.429 -16.89% 0.547 6.04%
avg. superstars per industry 2.090 1.874 -10.33% 1.868 -10.59% 2.819 34.89%
mass of small firms 1.000 0.719 -28.13% 0.667 -33.28% 1.387 38.71%
initial output 0.793 0.733 -7.49% 0.819 3.32% 0.811 2.23%
CE Welfare change -12.76% -7.60% 12.65%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.39% 3.14% 2.46% 6.37% 2.19% -5.40%
R&D intensity 2.50% 2.47% -0.97% 2.72% 9.05% 2.07% -17.01%
average markup 1.444 1.444 0.02% 1.446 0.14% 1.301 -9.88%
std. dev. markup 0.452 0.451 -0.31% 0.448 -0.91% 0.325 -28.06%
labor share 0.610 0.610 -0.07% 0.609 -0.29% 0.628 2.87%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.783 0.748 -4.55% 0.775 -1.06% 0.683 -12.82%
top point (intra-industry) 0.448 0.447 -0.28% 0.452 0.98% 0.462 3.17%
avg. profitability 0.210 0.211 0.40% 0.210 0.01% 0.162 -22.74%
avg. leader relative quality 0.678 0.668 -1.48% 0.649 -4.31% 0.607 -10.44%
std. dev. leader rel. quality 0.165 0.164 -0.70% 0.154 -6.72% 0.140 -15.27%

superstar innovation 0.169 0.177 4.85% 0.184 9.24% 0.180 6.75%
small firm innovation 0.019 0.021 11.64% 0.024 27.35% 0.028 46.31%
output share of superstars 0.516 0.519 0.55% 0.525 1.74% 0.483 -6.46%
avg. superstars per industry 2.090 2.149 2.82% 2.239 7.16% 2.412 15.41%
mass of small firms 1.000 1.074 7.38% 1.438 43.84% 1.000 0.00%
initial output 0.793 0.794 0.19% 0.798 0.65% 0.769 -3.03%
CE Welfare change 2.05% 4.18% -5.59%

Notes: The table reports the changes in model moments when setting the parameters of interest back to their estimated levels in
the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample. The benchmark is the
late-period stationary equilibrium.
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by 13.9% in superstar innovation, whereas small firm innovation drops significantly more by 41.3% of

its value. The consequent decrease in the profitability of small firms reduces their mass by 28.1%. As a

combined effect of the changes in innovation, there is a significant decrease in the growth rate by 10.39%

of its value, which translates into a welfare loss of 12.76% in consumption-equivalent terms.45

This experiment reveals that the increase in the estimated market power of superstar firms results in

increased economic growth due to better incentives to innovate and the resultant changes in the industrial

structure. If the elasticity of substitution had not fallen, there would be less incentive to innovate to

become superstar firms, which implies industries being dominated by an even smaller number of superstar

firms. These superstar firms, in turn, would not innovate as much, since the “escape competition” effect is

weaker – fewer superstar firms means less peer competition. Therefore, the average markup would stay

virtually the same, and the static welfare gains would be limited. The dynamic losses from reduced growth

overshadow slightly higher markups, resulting in lower welfare.

Next, we look at what happens when we set the competitive fringe’s productivity relative to the industry

leader, ζ, to its early period value. Unlike η, changes in this parameter capture the competition from small

firms. This time, the average markup falls from 1.44 to 1.32. Given that the average markup in the early

sample is 1.30, the change in ζ can explain nearly all of the change in the average markup across time.

While the reduction in markups improves static efficiency, increasing initial output by 3.32% and the labor

share by 6.98%, average profitability falls by 21.0%. Consequently, firms have less incentive to innovate,

reducing small firm innovation by 41.6% and superstar innovation by 23.5%. Combined together, this

reduces the output growth rate from 2.31% to 1.83%. Despite the gains in static efficiency, social welfare

drops by 7.60%.46

There are two main takeaways from this experiment. First, our model suggests that the overall increase

and the polarization in markups which were observed after 1975 owe mostly to a reduction in competition

from small firms, rather than a reduction in competition between superstar firms, or the changing costs of

innovation. This is consistent with the previous findings in the literature regarding the decline in business

dynamism and “winner-takes-most” dynamics as in Decker, Haltiwanger, Jarmin, and Miranda (2016)

and Autor, Dorn, Katz, Patterson, and Van Reenen (2020) among others. The output share of superstars

increases because the relative productivity of small firms is lower. Second, our model’s implications

regarding the social costs of increasing markups are quite different from other papers in the literature

which focus on static efficiency gains alone. Our model suggests that the increase in markups can be

welfare-improving when the dynamic effects on productivity growth are taken into account. Since this is a

key difference of our model, we discuss the static vs. dynamic effects of increasing markups in richer detail

in Section 5.2.4.

What could be the reason behind the estimated decline in the relative productivity of small firms?

Several potential mechanisms exist, such as increasing globalization (access to international markets and

inputs), advantages of the superstars in acquiring and exploiting data, changes in advertising and brand

45Note that this welfare number should be interpreted with caution, since the change in η can be considered a change in
consumer preferences rather than a change in production technology. Therefore, the drop in initial consumption might not
indicate a welfare loss. However, the significant drop in the growth rate still means that a hypothetical consumer with unchanged
preferences would be worse off.

46While welfare for the representative household drops by 7.60%, we show in Appendix A.6 that these losses are unevenly
distributed between hypothetical pure workers and pure capitalists. Capital owners experience a much larger welfare loss from
decreased markups than workers.
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value, increasing costs of imitation (technological as well as legal), or a decline in knowledge spillovers.

Our results highlight a direction for future research, suggesting that the key to understanding the increase

in markups lies behind uncovering the factors that led to the decline in the relative productivity of small

firms, and their relative contributions.

5.2.2 Costs of Superstar vs. Small Firm Innovation

In our third experiment, we set the parameters that govern the innovation cost function of small

firms, ν and ϵ, to their early period values. Unsurprisingly, there is a very significant direct effect on

small firm innovation which increases by 175.6% of its value. The average number of superstar firms

per industry increases by 34.9%, which is roughly double the total difference between the early and late

periods. Average profitability is virtually the same, so the Schumpeterian creative destruction effect does

not change. On the other hand, the increased number of superstars boosts the “escape competition” effect,

and superstar innovation increases by 36.2% of its value. Hence output growth increases from 2.31% to

2.74%. Coupled with a slight gain in initial output of 2.23%, social welfare improves by 12.65%.

Recall that in our model we define entry into superstars not as newly established firms. Through

successful innovation, small firms become superstar firms. Whereas the decrease in the competitive

fringe’s productivity ζ captures the declining product market competition from small firms, the increase

in the cost of small firm innovation reduces the frequency at which small firms can join the ranks of

superstar firms. Therefore, our estimates suggest that the number of small firms with high growth potential

(“gazelles”) has gone down, which allows industries to be dominated by fewer superstar firms. This finding

is consistent with the recent evidence by Sterk, Sedláček, and Pugsley (2021), who find that both the share

of such “gazelles” among all firms, and their average growth rates have fallen over time after 1975. As the

experiment suggests, this leads to a weakening of the incentives to innovate by the remaining superstar

firms, which hurts productivity growth.

Our fourth experiment reverts the parameters of the superstar innovation cost function, χ and ϕ, to

their early period values. Superstar innovation increases by 4.85% in response. However, this increase is

more than matched by a simultaneous increase in small firm innovation by 11.6%. Average profitability

and the output share of superstars do not change by much, leading to virtually unchanged average markup

and initial output. This means static efficiency remains comparable to the benchmark, and the 3.1%

increase in output growth translates to a slight 2.05% increase in welfare.

This experiment relates directly to the literature on the increasing costs of innovation (“ideas are getting

harder to find”). As noted in Bloom, Jones, Van Reenen, and Webb (2020), the number of researchers

employed in research and development of new ideas has been constantly increasing over the time period.

Looking at the determinants of output growth in our model, the reduced competition from superstars and

small firms push for higher growth, whereas increased innovation costs offset some of the competition

channel, resulting in the observed increase in productivity growth. In this aspect, our findings differ

from the popular hypotheses regarding how the decline in competition might have led to a productivity

slowdown. There can be many reasons behind the decline in research productivity, ranging from the

reduced arrival rate of general purpose technologies (Gordon (2012)) to stronger intellectual property

protection (Han (2018)), increased patent litigation (Galasso and Schankerman (2014)), protective

patenting (Argente, Baslandze, Hanley, and Moreira (2023)), or increasing misallocation of talent in
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innovation due to increasing wealth inequality (Celik (2023)). Our results suggest future research directed

at identifying the reasons behind the decline in research productivity might hold the key to understanding

the most recent decline in productivity growth. Comparing the results of the third and fourth experiments

also highlight the disproportionate role the decline in the R&D efficiency of small firms played in slowing

down productivity growth. In comparison, the increasing costs of innovation for superstar firms have a

significant, but smaller effect.

5.2.3 Entrepreneurship and Firm Entry

In our final experiment, we consider the effects of the decline in the firm entry rate, and the changes to

the costs of founding new businesses. To this purpose, we set the scale parameter of the entrepreneur cost

function, ψ, and the exit rate, τ, to their early period values. From the early period to the late period, the

exit rate τ goes down, and the scale parameter ψ goes up. The prior increases the survival rate of small

firms, therefore increasing the expected value obtained from founding a new business. The latter increases

the cost of doing so. Therefore, the two changes push the equilibrium mass of small firms in opposite

directions. The total effect is an increase of 43.84%. This increase boosts small firm innovation by 27.35%,

which also encourages more innovation by superstars at 9.24%. Initial output is virtually the same, and

the growth rate increases by 6.37% of its value. The combined welfare effect is calculated as 4.18%.

The increasing cost of entrepreneurship and the decline in firm exit rate act to partially offset each

other. If we consider their effects separately, reverting the value of ψ by itself leads to an increase in

growth by 9.00% and welfare by 5.98%, whereas repeating the same exercise for τ reduces growth and

welfare by 3.81% and 2.40% only, respectively. For average markups and market concentration, the

relative productivity of small firms seems to matter much more than their total number. For productivity

growth, the changes in costs of innovation dominate the changes in firm entry and the cost of founding

new businesses.

5.2.4 Static vs. Dynamic Costs of Higher Markups

The second counterfactual experiment in Section 5.2.1 where the relative productivity of the competitive

fringe ζ was reverted to its early period value revealed that increased competition from small firms reduced

the average markup to nearly its early period value, yet the dynamic change in welfare was a loss of 7.6%.

To better understand why this happens, it is useful to decompose the change in welfare into its constituent

parts using equation (39). At the same time, our finding differs significantly from static analyses that focus

on the efficiency gains from reduced markups without taking the implications for productivity growth and

endogenous industry dynamics into account. This motivates us to also perform the decomposition where

we only consider the static changes from reduced markups, and the static changes plus the endogenous

change in the distribution of industries, while keeping the innovation policies and the output growth rate

the same. The results are presented in Table 3.

The first column of Table 3 calculates and decomposes the change in welfare if we ignore the dynamics

completely. The dynamics come into play through three model components: (1) the growth rate, (2) the

change in consumption to output ratio due to R&D spending and the cost of new business entry, and (3)

the changes in the relative wage rate ω and the production by superstar firms ∑ f (Θ)µ(Θ) which both
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TABLE 3: STATIC VS. DYNAMIC COSTS OF HIGHER MARKUPS

Static Static+New Distribution Dynamic
∆W CEWC ∆W CEWC ∆W CEWC

competitive fringe productivity 3.297 14.10% 3.297 14.10% 3.297 14.10%
relative wage -1.594 -6.18% -1.687 -6.53% -1.687 -6.53%
output of superstar firms -0.691 -2.73% -0.794 -3.13% -0.794 -3.13%
consumption/output 0.000 0.00% 0.000 0.00% 0.243 0.98%
output growth 0.000 0.00% 0.000 0.00% -3.034 -11.43%
total 1.012 4.13% 0.816 3.32% -1.975 -7.60%

Notes: The table decomposes the change in welfare into its constituent parts using equation (39).

depend on the distribution of industries µ(Θ). To calculate the static effects, we keep the growth rate,

R&D spending, new business creation, and µ(Θ) at the late period levels. There is a large increase in

output and welfare as a direct effect of increasing ζ. Increased production increases labor demand, which

pushes the relative wage ω up, the effect of which is negative. Finally, increased production by small firms

results in reduced supply from superstar firms, so the third component is negative as well. The direct effect

dominates these endogenous (static) responses, and welfare is increased. Column 2 shows the change in

consumption-equivalent welfare by each individual component. The combined effect is a significant 4.13%

gain in welfare.

The third column repeats the same exercise as in column one with a single difference: we use the

distribution of industries µ(Θ) implied by the dynamic long-run change in response to the increase in ζ

rather than retaining the late sample values. This changes the effects from the relative wage and the output

of superstars slightly, and the gain in welfare remains close but lower at 3.32%. This means ignoring the

long term effects on industrial structure – i.e., the number and relative qualities of superstars – would

result in overestimating the welfare gains by 24%, which is not insignificant.

The fifth column displays the welfare decomposition for the full dynamic response. As alluded to in the

second exercise, the difference in the initial output (and hence the static efficiency) is limited. There is

a small welfare gain from the consumption to output ratio term due to reduced R&D spending and new

business entry. However, there is a very significant decline due to reduced growth that wipes out both the

static welfare gains from reduced markups and the gains from higher initial consumption. Therefore, the

final tally is a loss of 7.60%, as the dynamic losses from reduced productivity growth valued at 11.43%

of consumption completely dominate the 3.32% gain from improved static efficiency. A static model that

does not endogenize productivity growth would not be able to obtain this result, and highly overestimate

the cost of increased markups in the US during this time period.47

6 Model Validation

Beyond its ability to replicate the (untargeted) inverted-U shape relationship between market concen-

tration and innovation (see Figure 3) and to generate realistic market shares, concentration ratios, and

firm life cycles, our estimated model also delivers several other predictions that can be tested, especially

47Note that our baseline analysis assumes a representative household. In Appendix A.6, we show that the gains from higher
markups might be unevenly distributed between different types of agents, e.g., workers and owners of capital.

34



related to trends in productivity, market concentration, and the labor share. In particular, we show that our

model correctly predicts the increase in productivity dispersion documented by Barth, Bryson, Davis, and

Freeman (2016) and the negative correlation between productivity dispersion and the labor share across

industries highlighted in Gouin-Bonenfant (2022). In addition, our model is in line with several facts

related to changes in the labor share documented in Autor, Dorn, Katz, Patterson, and Van Reenen (2020).

6.1 Increase in Productivity Dispersion

Recent studies emphasize the role played by increased between-firm dispersion in explaining trends in

income inequality. For instance, Song, Price, Guvenen, Bloom, and Von Wachter (2018) find that two-thirds

of the rise in the variance of earnings is due to increased between-firm wage dispersion. In addition, Barth,

Bryson, Davis, and Freeman (2016) document a significant rise in the variance of between-firm productivity

(log revenue per worker) between 1977 and 2007.48 In our model, productivity dispersion both within

and across industries arises endogenously as the outcome of innovation. In particular, our quantitative

exercise allows us to determine how productivity dispersion responds to the structural transition of the

economy. Using the same measure as in Barth, Bryson, Davis, and Freeman (2016) (the variance of log

revenue per worker), our estimation predicts a rise in productivity dispersion by 39.27% between the early

and late subsamples (i.e., from 1976 to 2005) which is very close to the estimated 32.6% increase in Barth,

Bryson, Davis, and Freeman (2016) between 1977 and 2007.

6.2 Productivity Dispersion, Value-Added, and the Labor Share

Building on the evidence from Barth, Bryson, Davis, and Freeman (2016), Gouin-Bonenfant (2022)

further shows that an exogenous increase in productivity dispersion could explain the observed fall in the

labor share in a model with labor market monopsony power. Testing one of the main predictions of his

model, he shows, using Canadian data, that the industry-level labor share is negatively correlated with

dispersion in productivity. In our model, both labor share and productivity dispersion are endogenously

determined. Productivity dispersion within an industry depends on innovation activity whose returns, in

turn, shape the productivity distribution. Given the rich structure of our model, we can also compute the

correlation between the industry-level labor share and productivity dispersion. Thanks to our oligopolistic

structure based on Atkeson and Burstein (2008), our model features a negative association between the

industry-level labor share and the dispersion of productivity (TFPQ) in both sub-samples, in line with the

findings in Gouin-Bonenfant (2022).

Furthermore, as in Autor, Dorn, Katz, Patterson, and Van Reenen (2020) and Kehrig and Vincent (2021),

Gouin-Bonenfant (2022) also documents a negative relationship between (log) firm-level labor share and

(log) value-added. We repeat this regression in our model, and obtain a coefficient of -0.0883, which is

very close to the value -0.112 that he documents for Canada.

48Faggio, Salvanes, and Van Reenen (2010) provide evidence for a similar increase in productivity dispersion in the UK since
1980. Andrews, Criscuolo, and Gal (2016) also highlight an increase in productivity difference between frontier and laggard firm
in 24 OECD countries.
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6.3 Market Concentration and the Labor Share

Using US firm-level data, Autor, Dorn, Katz, Patterson, and Van Reenen (2020) also highlight how the

decrease in the labor share has been associated with several dimensions of the rise in market concentration

and, in particular, the rise of superstar firms. First, they show that industry sales increasingly concentrate

in a small number of superstar firms. In our model, the market share of superstar firms increases by 6.9%

between the early and late sub-samples. This result is comparable to those found in Autor, Dorn, Katz,

Patterson, and Van Reenen (2020), if slightly lower, and is closest to the rise in manufacturing. This

untargeted change in our model is directly related to the competition between superstars and small firms

which we have shown to be decreasing over time and which is the main driver of the observed increase in

markups.

Regressing the change in the 4-digit industry labor share on the change in market concentration

(measured by the market share of top 4 and top 20 firms as well as the Herfindahl index), they further show

that industries in which market concentration rose the most also experienced the sharpest decline in their

labor share. Our model delivers the same prediction between our two sub-samples. In particular, focusing

on the corresponding two relevant measures of concentration in our model (i.e., top 4 market share and

the Herfindahl index), we also find a negative association between the change in market concentration

and in the labor share.49 This negative correlation can be obtained in our model thanks to our oligopolistic

market structure based on Atkeson and Burstein (2008). From a quantitative perspective, the estimates

from those regressions fall in the ballpark of those reported in Autor, Dorn, Katz, Patterson, and Van Reenen

(2020). Our regression based on the top 4 share of sales delivers a coefficient of -0.196 (the estimates in

Autor, Dorn, Katz, Patterson, and Van Reenen (2020) range between -0.146 and -0.339). For the Herfindahl

index regression, our estimate is -0.531 (between -0.213 and -0.502 in Autor, Dorn, Katz, Patterson, and

Van Reenen (2020)). These quantitative results in line with what is observed in the data can be seen as

additional external validation of our model.

7 Robustness of Quantitative Results

It is important to test whether our model’s sharp growth and welfare predictions are driven by the

modeling assumptions or the data used for estimation. In this section, we present and discuss several

robustness checks to show that this is not the case.

7.1 Extending the Estimation to 2006-2016

This section extends the analysis to the most recent period going from 2006 to 2016. While this period

has some data limitations and covers the Great Recession, our re-estimation and associated counterfactual

results confirm the main results from the early and late subsamples.50 Most of the trends that were

apparent during the transition from the early to the late period continue until the most recent decade

49In particular, we compute the change in market concentration and in the labor share for industries with the same number of
firms and the same productivity step distribution in the early and late subsamples.

50We rely on patent citation data from UVA Darden Global Corporate Patent Dataset to construct the innovation-related data
moments (Bena, Ferreira, Matos, and Pires (2017)). We exclude the years 2007-2009 when constructing the data moment for the
output growth rate to exclude the effect of the Great Recession.
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for which we have data. Markups and their dispersion have continued to rise significantly, R&D intensity

kept increasing, the labor share experienced a further decrease, and so did the entry rate of new firms

(see Table B13 in Appendix B). The main difference compared to the trends between the early and late

subsamples relates to productivity growth. While productivity growth increased between the early and late

subsamples, the latest period experienced a significant decrease in productivity growth.

The results of our experiments remain unchanged when comparing the early and later subsamples.

Innovation costs are still on the rise as ideas keep getting harder to find. Most of the change in markups is

attributed to the decrease in the relative productivity of the fringe ζ, and the rise in markups is associated

with an increase in welfare by 8.36%, stemming from dynamic gains from the response of firms’ innovation

to the increase in market concentration, which more than offset the static losses from higher markups. All

the welfare effects are now either amplified or remain very similar: -13.56% vs. -12.76% for η, -8.36% vs.

-7.60% for ζ, 12.38% vs. 12.65% for small firm R&D efficiency, and 9.59% vs. 2.05% for large firm R&D

efficiency. The full set of results from our counterfactual experiments for the period 2006-2016 can be

found in Table B14 in Appendix B.

7.2 Non-Stationary Dynamics and the Welfare Costs of the Transition

The welfare results in Section 5.2 are obtained by comparing the actual and hypothetical stationary

equilibria. One might be concerned that a comparison across stationary equilibria might be insufficient

to capture the full differences in welfare across the separate scenarios, since some effects of the changes

are instantaneous (e.g., the effects on static product market competition), whereas the rest take more

time to manifest in full (e.g., the changes to the industry-state distribution µt(Θ).) To capture the welfare

differences from the point of view of an agent at t = 0, one needs to take the transitional dynamics in

non-stationary equilibria into account.

Before we repeat our quantitative experiments, it is worth discussing how fast several economic

variables of interest move during the transitions between the early and late period economies, as well as

between the late period and the most recent period of 2006-2016. Figures B2 and B3 display the time

paths of selected variables for these two transitions, respectively.

As already discussed in Section 2.3, firms’ value and innovation policy functions respond immediately

by jumping to the immediate vicinity of their new stationary values, with little change over the transition.

Likewise, given an industry state Θ, the static industry equilibria respond immediately to the changes

in parameters. However, the distribution over industry states µt(Θ), the mass of small firms mt, and

aggregate moments adjust more slowly. Panel (f) of Figure B2 shows the evolution of the distribution of

the number of firms per industry over time, which summarizes the change in µt(Θ).51 Average markups

and the labor share converge to their new steady state very fast after an initial jump that very slightly

overshoots their new long-run values (see Panels (c) and (e) of Figure B2). Firm entry is also relatively

slower at converging to its balanced growth path level, experiencing an initial large drop followed by a

gradual increase as can be seen in Panel (d) of Figure B2).

Economic growth initially rises significantly above its new long-term value, followed by a slow con-

vergence to its new stationary value, producing a spike in productivity growth, followed by a progressive

51We show this summary measure, since µt(Θ) is an 84-dimensional object under our choices for n̄ and N̄.
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slowdown. R&D intensity follows a similar trajectory (see Panels (a) and (b) of Figure B2). In other words,

our model delivers transitional dynamics that are characterized by a temporary surge in productivity

growth – as has been observed in the data in the late 1990s and early 2000s – followed by a slowdown.

The model is therefore able to replicate this pattern in the data even though we do not target the transition

path between the two periods in our estimation.

In the transition between the late and later periods, productivity growth slows down considerably (see

Panel (a) of Figure B3) which can be linked to the recent productivity slowdown discussed for instance in

Gordon (2012, 2014). R&D intensity slowly rises up towards its stationary value. The decline in the small

firm entry rate is much more gradual, falling down initially by one third of the total amount, and then

slowly converging towards the lower stationary value. The average markup once again responds almost

immediately.

What about the counterfactual experiment results? In Section A.9.2 of the Appendix, we conduct the

equivalents of the decomposition experiments, where we require all economies to start from the early

period stationary equilibrium, and converge over time to the late stationary equilibrium. The welfare

numbers are also recomputed taking the full transition into account, and are presented in Table A7.

The welfare difference between the realized transition and the counterfactual of remaining in the early

steady-state in perpetuum is now calculated to be -11.43%, as opposed to -5.59% in the baseline analysis.

This shows that taking the non-stationary dynamics into account does not change the direction of the

welfare impact of the structural transition in the US. The structural change that contributes the most to the

loss in welfare is the change in the elasticity of substitution, the impact of which is calculated as 8.04%,

which is not very different from the 12.76% found in the baseline. Finally, we find that the dynamic gains

in welfare associated with higher markups still dominate the static losses in efficiency, but the total welfare

gain is smaller (1.63%). This is because the increase in aggregate productivity growth takes time to fully

manifest due to the time it takes for the industry-state distribution µt(Θ) to converge to its stationary

value, whereas the static losses from a less productive competitive fringe are instantaneous.

7.3 Lower Elasticity of Intertemporal Substitution

The period utility function in the baseline model is the natural logarithm, which implies an elasticity of

intertemporal substitution (EIS) of 1. This is done for tractability, as it allows an intuitive decomposition

of welfare, and the computation of stationary and non-stationary equilibria is simpler since the discount

term in the firm value functions, r − g, is equal to the discount factor of the representative household

ρ. Conducting a survey of 1429 studies, Havranek, Horvath, Irsova, and Rusnak (2015) report that the

average estimate of the EIS for the US is 0.594, with a standard error of 0.036. Since this number is

quite low in comparison, one might worry that our choice regarding the preferences might exaggerate the

dynamic welfare gains from increased growth. To establish the robustness of our results, we change the

preferences given in equation (1) to

U =
∫ ∞

0
e−ρt C1−θ

t
1 − θ

dt (42)

where θ is the constant relative risk aversion parameter. To remain conservative, we impose θ = 2, which

implies an EIS of 0.5; lower than the mean estimate for the US. We repeat the estimation with the new
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preferences, and the results are displayed in Table B15. To remain consistent with the baseline, we change

the value of ρ to 0.02, so that the implied real interest rate under 2% growth is the same across estimations.

Using the new estimation results, we repeat the counterfactual exercises in Section 5.2, and report the

results in Table B16. In general, the results remain quite comparable. In particular, the dynamic losses

from welfare still dominate the static gains in the experiment where markups are reduced to their early

period level. The total welfare impact is still negative at -2.94%. We conclude that our choice of utility

function does not drive our results.

7.4 Capital Accumulation

In the baseline model, production only uses labor as an input. This is done for tractability and ease

of comparison to other work on endogenous markups discussed earlier. In this section, we show that

extending our model to include endogenous physical capital accumulation does not change the results

significantly. The details of this extended model can be found in Appendix A.7.

Unlike the previous two robustness checks, we do not re-estimate the model. This is because all targeted

moments except R&D intensity remain exactly the same after the introduction of capital accumulation.

However, consumption equivalent welfare changes are affected, since output is now also used for investment

in physical capital. Table B17 presents the results of repeating the counterfactual exercises in Section 5.2.

It is seen that the direction of welfare changes are maintained. In particular, reverting the value of ζ to its

early period value still results in a welfare loss of 6.53%. We conclude that abstracting away from capital

accumulation does not drive our results.

7.5 Sensitivity to Markup Estimates

In our baseline estimation, we use the sales-weighted average markup estimates from De Loecker,

Eeckhout, and Unger (2020) as an estimation target. Concerns have been raised regarding whether the

cost- or sales-weighted average markup should be the focus of attention, given that it is the cost-weighted

average markup that summarizes the distortions in allocative efficiency in commonly-used theoretical

frameworks.52 Despite our choice to target the sales-weighted average markup, our model delivers lower

values for the cost-weighted average markup in all three samples. This is consistent with what is observed

in the data.

To further establish the robustness of our results, we re-estimate the model using cost-weighted average

markup targets obtained from Edmond, Midrigan, and Xu (2023) to hit them precisely, and repeat our

counterfactual experiments. Table B18 displays the results of re-estimation. The rise in markups is still

welfare-enhancing at 3.60%.

More recently, Bond, Hashemi, Kaplan, and Zoch (2021) have raised concerns over the consistency of

average markup estimates obtained using the De Loecker and Warzynski (2012) methodology, which both

De Loecker, Eeckhout, and Unger (2020) and Edmond, Midrigan, and Xu (2023) follow. This raises the

question of whether our results hinge on markup estimates that might potentially be biased. Fortunately,

given the rich structure of our setting that ties several aggregate moments together, we can still estimate

our model even if we do not explicitly target any markup-based moments. As seen in the decomposition

52See Edmond, Midrigan, and Xu (2023) among others.
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exercise in Table 2, the relative productivity of small firms ζ which governs the average markup, is also

responsible for the majority of the change in the labor share. Therefore, even if we do not explicitly target

the average markup, the labor share can be used to identify the value of ζ, which in turn can identify

the implied average markup through indirect inference. Following this line of reasoning, we re-estimate

the model after dropping the average markup and the standard deviation of markups from the set of

targeted moments.53 Table B20 displays the results of re-estimation. The indirect inference suggests that

the average markup has increased by 8.35% of its value between the early and late periods, which is

similar to the 10.99% increase in the baseline. The average markup level in the early period is found to be

at 1.29, very close to the 1.30 estimate in De Loecker, Eeckhout, and Unger (2020). The positive welfare

effects associated with the increase in markups are still present: the welfare impact of keeping the relative

productivity of small firms ζ the same as in the early sub-sample would decrease welfare by 4.53%. Not

relying on markup estimates obtained through the De Loecker and Warzynski (2012) methodology does

not change our conclusions on the direction of the effect of rising markups on welfare.

7.6 Further Robustness Checks

We have built several other model extensions, and conducted more robustness checks, estimations, and

counterfactual experiments beyond those reported thus far. For brevity, these are relegated to the Revision

Appendix. These not only demonstrate the robustness of our quantitative results, but also showcase the

flexibility of our new unified framework, which we hope will be of use to future researchers. We briefly list

some of these below:

• Allowing small firms to have positive profits either through decreasing returns to scale in

production or through collusion.

We extend the model and derive the static equilibrium conditions and the level of output for two

alternative models: (i) decreasing returns to scale in production technology (for both small firms

and superstars), and (ii) letting the small firms in the competitive fringe collude, and thereby act as

if they were a superstar with the productivity of the fringe ζqleader
jt . In both cases, we depart from

the baseline model in which small firms were making zero profits. Letting small firms earn positive

profits do not change our main results. More details about these extensions are relegated to the

Revision Appendix Section C.

• Extending the model to allow for multi-product firms.

We extend the model to allow for multi-product firms as in Klette and Kortum (2004). In this

extension, on top of all the dynamics present in the baseline framework, firms can also grow by

entering new markets. Superstar firms are now collections of several “product lines” in different

markets, which can be interpreted as products/industries/locations/industry-location pairs. Each

product line of a superstar firm operates exactly as it did in the baseline model. However, the

superstar firms can now conduct “expansion” R&D/radical innovation. Conditional on success, they

enter a new product line, and their initial productivity is n̄ steps behind the product line leader,

identical to that of a new superstar that could emerge in the same product line as a result of small

53This is feasible since our model is already overidentified (9 parameters vs. 11 targets.)
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firm innovation. Expansion R&D lets firms grow horizontally across product lines, and these product

lines can be lost endogenously through the same mechanism that caused firms to lose their superstar

status in the baseline model. The difference is that such an event only destroys the superstar’s

presence in that particular product line, but a superstar with more than a single product line still

survives. The extended model shows that embedding a Klette and Kortum (2004) superstructure in

our model does not eliminate its tractability. See Section D of the Revision Appendix for more details.

• Modeling competition à la Bertrand.

We assume Cournot competition in our baseline analysis due to its ability to generate more variation

in markups and more realistic market share distributions consistent with what is observed for large

firms in the United States, but the fact remains that most of our results go through regardless of

the specific assumption on whether firms compete in prices or quantities. We have re-estimated the

model and performed a robustness check on our results with differentiated Bertrand competition

instead. More details about this extension are relegated to the Revision Appendix Section E.

• Using a broader intangible investment definition in the estimation.

In the baseline estimation, we map firm-year-level innovation to firm-year-level average patent

citations, and aggregate spending on innovation to aggregate spending on R&D in the data. We

examine the robustness of our quantitative results by conducting an alternative estimation for the

early and late subsamples in which we target (1) a measure of aggregate intangible investment

to GDP rather than R&D to GDP alone, and (2) use a firm-year-level measure of total intangible

investment to measure innovation, as opposed to relying on patent data, when obtaining the data

moments that let us replicate the inverted-U relationship between innovation and relative sales. Our

quantitative results remain robust. More details about this robustness check are relegated to the

Revision Appendix Section F.

• Increasing the maximum number of productivity steps between superstars (n̄) as well as the

maximum number of superstars per industry (N̄).

In setting up the model, we had to make a choice on the upper bound for the maximum number of

productivity steps (n̄) and the maximum number of superstar firms within an industry (N̄) so that

the equilibria are computable. While in theory these numbers could be arbitrarily large, increasing

any of them rapidly increases the number of potential firm and industry states, which slows down

the numerical solution of the model. We have chosen the baseline values as a good compromise

between allowing the model to have rich enough heterogeneity within and across industries and the

time needed for estimation and computing counterfactual equilibria. In Section G of the Revision

Appendix, we show that our quantitative results are virtually unchanged when we increase the value

of N̄. Increasing n̄ requires re-estimation, but the quantitative results likewise remain robust.

• Imposing a quadratic R&D cost function to both small and large firms.

While part of the existing literature uses quadratic R&D cost functions (see for instance Akcigit and

Kerr (2018)), we have decided to estimate the convexity of the R&D cost functions for both small and

superstar firms in our baseline analysis. As a robustness check, we have also re-estimated the model
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with quadratic R&D cost functions. It is worth noting that, when exogenously imposing quadratic

costs, the model has a hard time matching the level of R&D intensity and the growth rate of the

economy simultaneously. Despite the fact that the fit of the model is significantly worse than under

our baseline calibration, setting R&D convexity to 2 does not significantly change the results of our

counterfactual experiments. More details about this extension are relegated to the Revision Appendix

Section H.

• Examining the robustness of the results assuming a non-quadratic entrepreneur cost function.

We choose a quadratic entrepreneur cost function in the baseline due to the lack of available data

that could be used to separately identify the scale (ψ) and convexity parameters. Unlike incumbent

firms, for which we can empirically observe their innovation inputs (R&D expenditures) and outputs

(patents, citations, sales growth, productivity growth, ...), we are not aware of any representative

micro-data on business creation costs of entrepreneurs, which should ideally include not only the

material costs of founding a new business, but also the opportunity cost of the entrepreneur(s). To

mitigate the concerns that our quantitative results may be sensitive to the assumption about the

entrepreneur cost function, we conduct two separate robustness checks. In the first one, we assume a

higher convexity value of 3 instead of 2 for the entrepreneurs. In the second one, we assume a linear

cost (i.e., free entry). No re-estimation is needed in either case, and the moment match is identical

to that in the baseline. We repeat the counterfactual experiments. Our quantitative results remain

robust in both settings. More details about these extensions are relegated to the Revision Appendix

Section I.

8 Conclusion

We propose a new model of Schumpeterian growth in which firms strategically compete with other

firms and dynamically choose their innovation strategies. Our model can account for an arbitrarily high

number of firms in an industry, with endogenous entry and exit, and can generate non-degenerate sales,

employment, markup, and innovation distributions within industries. This approach departs from much of

the previous literature on endogenous growth studying markups, competition, and innovation, in which

researchers use models featuring degenerate firm distributions with Bertrand competition in the product

market. It also can generate endogenous industry dynamics in rich detail, and replicate the observed

inverted-U relationship between innovation and competition both within and across industries.

We use the estimated model to gauge whether increasing markups boost or hinder aggregate innovation

and economic growth. The findings reveal that while the increase in average markups causes a significant

static welfare loss, this loss is overshadowed by the dynamic welfare gains from increased innovation in

response to higher profit opportunities. Overall, our results suggest that the dynamic effects of increasing

market concentration on innovation and productivity should not be ignored when trying to understand

the transformation in the US in the last four decades; and the rise of superstar firms and markups is not

necessarily detrimental to welfare.

Our results also highlight an increase in the costs of innovation over time. If the costs of innovation (for

both small and superstar firms) were set back to their earlier levels, it would generate a further increase in

42



productivity growth. These results point towards “the ideas are getting harder to find” hypothesis studied

in Gordon (2012) and Bloom, Jones, Van Reenen, and Webb (2020).

We view our research as a starting point for understanding the aggregate implications of strategic

interactions among heterogeneous firms. While our model shows the importance of using a model with

non-degenerate firm distribution and realistic product market competition to gauge the welfare impact of

rising markups, it can also be used in different settings where heterogeneous firms compete statically in

the product market, and dynamically to improve their relative market shares. The model is highly tractable

and could be easily extended to study the implications of various kinds of government policies, such as

size-dependent R&D tax credits, subsidizing new business entry, and corporate taxation. We expect future

studies along these lines to be both promising and fruitful.
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STERK, V., P. SEDLÁČEK, AND B. PUGSLEY (2021): “The Nature of Firm Growth,” American Economic Review,

111(2), 547–579.

TAN, T. F., AND S. NETESSINE (2014): “When Does the Devil Make Work? An Empirical Study of the

Impact of Workload on Worker Productivity,” Management Science, 60(6), 1574–1593.

WEISS, J. (2020): “Intangible Investment and Market Concentration,” Working Paper.
XIAOLAN, M. Z. (2014): “Who Bears Firm-Level Risk? Implications for Cash Flow Volatility,” Working

Paper.
ZEIRA, J. (1998): “Workers, Machines, and Economic Growth,” The Quarterly Journal of Economics, 113(4),

1091–1117.

48



Online Appendices:

Are Markups Too High?

Competition, Strategic Innovation, and Industry Dynamics†

Laurent Cavenaile Murat Alp Celik Xu Tian

†Contact Information: Laurent Cavenaile, Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6. Email:
laurent.cavenaile@utoronto.ca; Murat Alp Celik, 150 St. George Street, University of Toronto, Toronto, ON M5S 3G7. Email:
murat.celik@utoronto.ca; Xu Tian, Terry College of Business, University of Georgia, 620 South Lumpkin Street, Athens, GA 30602.
Email: xu.tian@uga.edu.

mailto:laurent.cavenaile@utoronto.ca
mailto:murat.celik@utoronto.ca
mailto:xu.tian@uga.edu


A Appendix

A.1 Growth rate

This section derives the growth rate of the economy.
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ln(Yt+∆t)− ln(Yt) = − ln(ωt+∆t) + ln(ωt) + ∑ plit(Θ)∆t ln(1 + λ)µt(Θ)

+∑
Θ
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]
pt(Θ, Θ′)µt(Θ) (45)

A.2 Proposition 1

Let Θ̂ denote the set of all industry-states Θ. Let h : Θ̂ → R be a function. Let p(Θ, Θ′) denote the

instantaneous flow from industry-state Θ to Θ′. Then, in a stationary equilibrium:
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A.3 Empirical Appendix

Unlike other recent models that study the effects of rising markups, we require our model to be

consistent with the observed empirical relationship between competition and innovation, which helps us

discipline the counterfactual model implications for innovation, economic growth, and welfare. In this

section, we present and reconfirm the empirical regularities between competition and innovation across

and within industries.

A.3.1 Variable Construction

Data Sources: We use the patent grant data obtained from NBER Patent Database Project which

covers the years 1976-2006, and rely on Compustat North American Fundamentals for financial statement

information of US-listed firms for the same years. Following a dynamic assignment procedure, we link the

two data sets.

Patent Citations: Our first measure of innovation is the number of citations a patent received as of

2006. We use the truncation correction weights devised by Hall, Jaffe, and Trajtenberg (2001) to correct

for systematic citation differences across different technology classes and for the fact that earlier patents

have more years during which they can receive citations (truncation bias).

Tail Innovations: In order to distinguish disruptive patents from ordinary ones, we declare a patented

innovation as a tail innovation if it is among the top 10% patents according to citations received among

all patents applied for in the same year. The tail innovation index is constructed as the fraction of tail

innovations among all granted patents of the firm in a given year, similar to Acemoglu, Akcigit, and Celik

(2022). Tail count is likewise defined as the total number of tail innovations a firm receives in a given year.

The first variable is scale-free, whereas the second one is scale-dependent.

Originality: We use the originality index devised by Hall, Jaffe, and Trajtenberg (2001). Let i ∈ I
denote a technology class and sij ∈ [0, 1] denote the share of citations that patent j makes to patents

in technology class i (with ∑i∈I sij = 1). Then for a patent j that makes positive citations, we define:

Originalityj = 1 − ∑i∈I s2
ij. This index thus measures the dispersion of the citations made by a patent

in terms of the technology classes of cited patents. Greater dispersion of citations is interpreted as a

sign of greater originality, since the patented innovation combines information from a diverse range of

technological fields. The patent classes used in the baseline analysis are the 36 two-digit technological

subcategories defined in Hall, Jaffe, and Trajtenberg (2001).54 The average originality of a firm’s innovation

in a given year is the average originality of all the patents for which the firm applied in that year. Originality

count is constructed by summing the originality scores of all patents the firm applied for. The first variable

is scale-free, whereas the second one is scale-dependent.

Generality: Similar to originality, we use the generality index devised by Hall, Jaffe, and Trajtenberg

(2001). Let i ∈ I denote a technology class and sij ∈ [0, 1] denote the share of citations that patent j
receives from patents in technology class i (with ∑i∈I sij = 1). Then for a patent j that receives positive

citations, we define: Generalityj = 1 − ∑i∈I s2
ij. This index measures the dispersion of the citations made to

a patent in terms of the technology classes of citing patents. Greater dispersion of citations is interpreted

54For robustness, the same measures are recalculated using the three-digit International Patent Classification categories, and
the US Patent Class categories assigned internally by the USPTO.
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as a sign of greater generality, since the patented innovation contributes to the creation of patents in a

diverse range of technological fields. Average generality and generality count are constructed in the same

way as average originality and originality count.

R&D Spending: Patent-based measures capture a successful innovation outcome. However, it might

also be worthwhile to look at the amount of resources spent by a firm to conduct innovation regardless

of success, as this captures the firm’s intent. For this purpose, we use the R&D spending reported in

Compustat. We have two variables, log R&D spending and log R&D spending 2. The first one excludes firms

when the variable value is missing, whereas the second one replaces missing values with zeroes.

Other Variables: While many inventions are patented, firms can choose not to patent some inventions

and keep them as trade secrets. Alternatively, a firm might improve its productivity through methods that

are not considered novel enough to warrant a patent by the patent authorities. In such cases, it might be

better to look at other firm outcomes that are likely to be correlated with productivity improvements. To

do so, we consider investment in advertising and physical capital on the cost side. In addition, we directly

look at the measured growth rates of firms’ sales, employment, and total assets.55

A.3.2 Industry Innovation and Market Concentration

As documented in Aghion, Bloom, Blundell, Griffith, and Howitt (2005), innovation and market

concentration have a non-linear relationship. While higher competition provides incentives for firms to

improve their relative productivity compared to their peers (“escape competition”) to improve their market

share and profits, increased competition can also reduce the incentives to innovate as it pushes down

profits in the whole market, which makes R&D investment less worthwhile. Depending on which effect

dominates in a particular market, increased competition can reduce or increase overall innovation.

We document the same empirical regularity using our own sample of firms from the US. We are

interested in the relationship between our innovation variables and market concentration. Table A1

contains the results of this exercise. In Panel A, we regress total patent count, total citations, tail innovation

count, and originality- and generality-weighted patent counts on market concentration as captured by

the Herfindahl-Hirschman Index (HHI) of SIC4 industries. All columns control for the number of firms

in the industry, as well as year and SIC2 industry fixed effects. As expected, the linear term has a strong

positive coefficient, whereas the quadratic term has a strong negative coefficient, replicating the inverted-U

relationship.56 Panel B repeats the same regressions where the innovation variables are constructed as the

average values for all firms in an SIC4 industry instead of the total across the industry. The results are

quite similar with the exception of originality-weighted patent count, which has the same signs, but the

coefficients are not statistically significant. Panel C regresses the average of firm-level average innovation

quality metrics for each industry. The results with these scale-independent innovation quality measures are

similar to the previous specifications.

55The growth rates are defined as in Davis, Haltiwanger, and Schuh (1996). This bounds the growth rates in the interval
[−2,+2], addressing concerns regarding outliers.

56We should stress that we do not claim that a causal relationship exists. This exercise documents correlation patterns that we
would like our model to be able to reproduce. Market concentration and innovation are both endogenous variables in our model
as well.
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TABLE A1: INDUSTRY INNOVATION AND MARKET CONCENTRATION (HHI) – BASELINE SPECIFICATION

Panel A: Total Innovation by Industry

patent count total citations tail count original count general count

HHI 256.792 57.539 52.281 43.730 28.863
(73.620)*** (13.716)*** (11.841)*** (16.929)*** (13.850)**

HHI sq. -184.904 -39.240 -34.843 -29.048 -20.688
(58.133)*** (10.692)*** (9.399)*** (13.384)** (10.914)*

number of firms 5.303 0.943 0.921 1.185 0.812
(0.619)*** (0.104)*** (0.095)*** (0.145)*** (0.101)***

R2 0.22 0.22 0.23 0.22 0.22
N 11,305 11,305 11,305 11,305 11,305

Panel B: Industry Average of Total Innovation by Firms

patent count total citations tail count original count general count

HHI 10.632 191.412 195.286 196.976 274.055
(5.295)** (67.088)*** (65.003)*** (128.902) (94.877)***

HHI sq. -10.377 -180.346 -181.419 -171.365 -247.240
(4.395)** (54.975)*** (54.239)*** (111.115) (81.058)***

number of firms -0.076 -0.694 -0.543 -1.714 -1.675
(0.015)*** (0.179)*** (0.151)*** (0.338)*** (0.295)***

R2 0.07 0.06 0.06 0.06 0.10
N 11,305 11,305 11,305 11,305 11,305

Panel C: Industry Average of Average Innovation Quality by Firms

avg. citations tail innov avg. originality avg. generality

HHI 2.015 2.333 3.248 3.046
(0.483)*** (0.725)*** (0.972)*** (0.965)***

HHI sq. -1.791 -1.962 -2.275 -2.907
(0.464)*** (0.746)*** (1.057)** (1.007)***

number of firms 0.008 0.010 -0.003 -0.006
(0.001)*** (0.001)*** (0.001)** (0.002)***

R2 0.32 0.15 0.34 0.35
N 11,305 11,305 11,305 11,305

Notes: Robust asymptotic standard errors are reported in parentheses. The sample period is from 1976 to 2004 at the annual
frequency. All regressions control for year dummies, and a full set of two-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p <
0.05, ∗p < 0.1.

A.3.3 Firm Innovation and Relative Sales

Different from earlier studies, we also consider the relationship between the relative market share of a

firm and its innovation. In this specification, we have firm × year level observations. Table A2 documents

our main findings. In Panel A, we regress average citations, tail innovations, average originality, and
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TABLE A2: FIRM INNOVATION AND RELATIVE SALES – BASELINE SPECIFICATION

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 7.919 6.861 8.396 17.845
(1.192)*** (1.374)*** (1.789)*** (1.903)***

relative sales sq. -7.851 -6.793 -6.271 -15.182
(1.435)*** (1.803)*** (2.208)*** (2.363)***

R2 0.15 0.10 0.26 0.25
N 104,911 104,911 104,911 104,911

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 2.144 3.582 1.331 0.966
(0.197)*** (0.307)*** (0.093)*** (0.080)***

relative sales sq. -1.462 -2.691 -1.169 -0.896
(0.269)*** (0.402)*** (0.119)*** (0.104)***

R2 0.57 0.50 0.96 0.94
N 104,911 104,911 61,186 104,911

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 10.702 12.054 0.254 0.194 0.269
(0.333)*** (0.228)*** (0.020)*** (0.016)*** (0.021)***

relative sales sq. -10.034 -11.145 -0.236 -0.183 -0.248
(0.436)*** (0.297)*** (0.025)*** (0.020)*** (0.025)***

R2 0.73 0.68 0.12 0.12 0.13
N 37,779 103,558 102,726 96,718 103,598

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1976 to 2004 at the annual frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock,
firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of four-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

average generality on relative sales of the firm in its SIC4 industry and its square. The control variables

include profitability, leverage, market-to-book ratio, log R&D stock, firm age, the coefficient of variation of

the firm’s stock price, and a full set of year and SIC4 industry fixed effects.57 Robust standard errors are

clustered at the firm level. In all four columns, we observe a strong inverted-U relationship between a firm’s

relative sales and its innovation output measures.58 As a firm’s market share increases, it invests more

resources into innovation. However, there are diminishing returns. As the firm becomes more dominant in

its industry and enjoys a larger market share, it begins to lower its investment in innovation.

Panel B repeats the same regressions where the scale-free innovation measures are replaced with

scale-dependent ones such as log total patents, log total citations, log R&D spending where missing values

57Table B1 reports the same regressions with year and industry fixed effects alone.
58This is consistent with the findings in other studies such as Hashmi and Biesebroeck (2016).
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are dropped, and log R&D spending 2 which replaces missing R&D values with zeroes. The inverted-U

relationship is still present when we look at the totals instead of the average innovation quality. Panel C

replaces the independent variable with other firm moments that are expected to be positively related to

productivity improvements. The same non-linear relationship holds if we consider log advertising spending,

log physical capital expenditures, firm sales growth, firm employment growth, or firm asset growth. Since

these firm moments are not reliant on the patent data to calculate, these results reassure us that the

regularities we document are not driven by the properties of patent-based innovation metrics.

Our results do not depend on our choice to look at the relative market share of a firm. Tables B2 and

B3 replicate the results in Table A2 where relative sales is replaced with relative employment and relative

total assets respectively. The same inverted-U relationship is present in all specifications.

We further test the robustness of our results by replacing the SIC4 fixed effects with SIC3, SIC2, and

firm fixed effects. The results can be found in Tables B4, B5, and B6, respectively. The results with SIC2 and

SIC3 fixed effects are quite similar to the baseline specification. Although the last specification with firm

fixed effects is much more demanding, the inverted-U relationship is still present in all seven regressions,

with some loss of significance in columns 2 and 3 in Panel A.

We confirm that our findings hold for both tradable and nontradable industries. Table B7 presents

the results obtained when we restrict the sample to firms operating in tradable industries, whereas Table

B8 presents the same for firms operating in nontradable industries.59 A robust inverted-U relationship is

detected in both samples.

Finally, we consider how the relationship changes across time. Tables B9 and B10 split the sample into

two periods: early (1976-1994) and late (1995-2005). Although the quantitative magnitudes are different,

the inverted-U relationship is present in both samples.

A.3.4 Robustness of the Inverted-U Relationship

Thus far, we have sought to identify an inverted-U relationship between competition and innovation

across and within industries using the standard approach found in numerous economic studies investi-

gating such non-linear relationships. This involves running regressions with linear and quadratic terms,

establishing the significance of their coefficients, and showing that the extremum lies within the data range.

However, the sufficiency of this methodology to establish the existence of a genuinely U or inverted-U

shape relationship has been the subject of some debate. In light of these concerns, Lind and Mehlum

(2010) develop a hypothesis test for the existence of U- and inverted-U-shape relationships.60 To further

establish the robustness of our results, we conduct the hypothesis test proposed in Lind and Mehlum

(2010) for all specifications in Tables A1 and A2, where the null hypothesis is the lack of an inverted-U

relationship. This involves testing whether or not the slope of the curve is positive at the start and negative

at the end of the interval of the variable of interest. Correspondingly, Tables B11 and B12 report the t- and

p-values at the lower and upper bounds of the interval of the explanatory variable. The null hypothesis is

59Tradable industries consist of agriculture, forestry, and fishing (01-09), mining (10-14), and manufacturing (20-39), where
the numbers in parentheses refer to the two-digit SIC codes. Nontradable industries consist of all remaining industries except
non-classifiable establishments (99).

60Arcand, Berkes, and Panizza (2015), Rodrik (2016), Bazzi, Gaduh, Rothenberg, and Wong (2016), Kesavan, Staats, and
Gilland (2014), Tan and Netessine (2014), and Batt and Terwiesch (2017) among others use the test proposed in Lind and
Mehlum (2010) to establish the existence of U- and inverted-U-shape relationships.
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firmly rejected in all 27 specifications but one. The inverted-U relationships that we have identified pass

the formal test of existence, with p-values below 1% in the vast majority of cases.61

A.4 Estimation Procedure

We pick the maximum number of superstars in an industry N̄ = 4 and the maximum number of

productivity steps between any two superstar firms n̄ = 5, which delivers 84 unique industry states Θ.62

The model has ten parameters to be determined: ρ, λ, η, χ, ν, ζ, ϕ, ϵ, ψ, τ. The consumer discount rate ρ is

set to 0.04, which implies a real interest rate of 6% when the growth rate is 2%.63 The remaining nine

parameters are structurally estimated following a simulated method of moments approach. In this section,

we discuss the data moments we use to discipline the parameter values, provide the relevant data sources

for each of these moments, and discuss which moments help identify which parameters. The associated

Jacobian matrix is presented in Table A3.

A.4.1 Data Moments and Sources

1. Growth rate: To discipline output growth in our model, we obtain the annual growth rate of real

GDP per capita from the US Bureau of Economic Analysis, and calculate the geometric averages for

each sub-sample.

2. Labor share: We obtain the labor share estimates from Karabarbounis and Neiman (2013); in

particular the time series for corporate labor share (OECD and UN). For capital share, we rely on

the data from Barkai (2020). For both time series, we calculate the averages across all years for

each sub-sample. In our baseline model, there is no capital. Therefore, the model-generated labor

share ωL = wL/Y corresponds to the share of labor income among labor income plus profits. For

comparability, we multiply this number by (1− κ) where κ is the (exogenous) capital share, following

Akcigit and Ates (2023).64

3. R&D intensity: The data for aggregate R&D intensity is taken from the National Science Foundation,

who report total R&D expenditures divided by GDP.

4. Level and dispersion of markups: To discipline markups, we target the sales-weighted average

markup and the sales-weighted standard deviation of markups found in De Loecker, Eeckhout,

and Unger (2020). In Section 7.5, we re-estimate the model using cost-weighted markups from

Edmond, Midrigan, and Xu (2023), and the results are found to be similar. Motivated by Bond,

61Out of the 27 specifications, the null hypothesis is rejected at 1%-level at both bounds in 19 cases, 5%-level in 4 cases, and
10%-level in 3 cases. The p-value is 13.8% in the only setting without significance.

62The results do not significantly change if we increase n̄ or N̄. The estimated value of λ adjusts to absorb the choice of a
different n̄. The relative productivity of the competitive fringe ζ adjusts to absorb the changes in N̄. In the estimated model, n̄ is
chosen large enough such that the largest superstars that we stop keeping track of are strictly smaller than 4/10,000 of the leader
in terms of revenue and profits in all industry-states. Keeping track of these firms would decrease the profits of the remaining
superstars by strictly less than 3/10,000, and this would not noticeably change the results.

63We target a relatively high real interest rate to remain conservative. For instance, a lower real interest rate of 4% would halve
the implied discount rate to ρ = 0.02. This would double the welfare contribution of the output growth rate relative to that from
the initial consumption level, significantly amplify the dynamic welfare gains, and further strengthen our findings.

64In Section 7.4, we explicitly add physical capital to the model, and calculate labor share without any correction, and the labor
share in the model becomes (1 − κ)ωL, justifying this correction.

7



Hashemi, Kaplan, and Zoch (2021), we also conduct another re-estimation that does not rely on any

markup-based moments obtained through the De Loecker and Warzynski (2012) methodology. This

leads to similar results.

5. Relationship between firm innovation and relative sales: As discussed earlier, replicating the

observed inverted-U relationship between competition and innovation helps us firmly discipline the

counterfactual implications of the model regarding economic growth and social welfare. To achieve

this, we target the relationship between firm innovation and relative sales. Innovation in the model

is measured as the Poisson arrival event of quality improvement, whereas it is measured as average

patent citations for each firm in the data. We normalize both by subtracting their means and dividing

by their standard deviation. In the data, we regress average citations on relative sales of the firm in its

SIC4 industry and their square. The control variables include profitability, leverage, market-to-book

ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock price, the number of

firms in the industry, and a full set of year and SIC4 industry fixed effects. We target the linear and

quadratic terms of a regression of (standardized) average citations on relative sales.

6. Average profitability: In the model, average profitability is calculated as static profit flow minus

R&D expenses divided by sales. In the data, it is defined as operating income before depreciation

divided by sales (OIBDP/SALE in Compustat.)

7. Level and dispersion of leader quality: We target the average relative quality of the leader in an

industry, and its standard deviation across all industries. In the model, quality is known. In the data,

we proxy quality by calculating the stock of past patent citations. The relative quality of the leader is

defined as the quality of the leader divided by the sum of the qualities of the top four firms in an

industry (SIC4 in the data.)

8. Firm entry: In our model, firm entry rate is defined as the entry rate of new small firms. We obtain

the data counterpart – the entry rate of new businesses – from the Business Dynamics Statistics (BDS)

database compiled by the US Census.

A.4.2 Identification and the Estimation Algorithm

The model is highly nonlinear, and all parameters affect all the moments. Nevertheless, some param-

eters are more important for certain statistics. The success of the SMM estimation depends on model

identification, which requires that we choose moments that are sensitive to variations in the structural

parameters. We now describe and rationalize the moments that we choose to match.

Table A3 reports the Jacobian matrix associated with the estimation of the baseline model. Each entry

of the matrix reports the percentage change in each moment given one percent increase in each parameter.

This table gives us some indication on which data moments are most informative in helping us identifying

each parameter: (i) The productivity step size parameter λ is mainly identified by the output growth

rate. A higher λ implies a higher increase in firm productivity upon successful innovation, which leads

to higher output growth rate; (ii) Average profitability and the standard deviation of markups are most

helpful in identifying the elasticity of substitution between superstar firms η. Larger η implies higher

substitution among industry varieties, which leads to lower market power, profitability, and heterogeneity
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TABLE A3: IDENTIFICATION: JACOBIAN MATRIX

λ η χ ν ζ ϕ ϵ ψ τ

growth rate 0.328 -0.397 -0.332 -0.120 -1.327 3.143 0.921 -0.100 -0.174
R&D intensity -0.850 -0.651 -0.264 -0.182 -3.348 1.867 1.440 -0.152 -0.264
average markup -0.033 -0.061 0.002 -0.003 -0.650 -0.010 0.023 -0.003 -0.005
std. dev. markup 0.148 -0.177 -0.004 0.014 -1.341 -0.010 -0.111 0.012 0.020
labor share 0.052 0.041 -0.002 0.005 0.493 0.009 -0.038 0.004 0.007
entry rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
β(innovation, rel. sales) 0.435 0.065 -0.154 0.014 -0.040 0.365 0.034 0.012 0.021
top point (intra-industry) 0.088 0.000 -0.016 -0.025 -0.105 0.088 0.217 -0.021 -0.036
avg. profitability -0.144 -0.116 0.039 -0.002 -1.881 -0.240 0.010 -0.002 -0.003
avg. leader rel. quality 0.644 0.316 -0.014 0.099 0.524 -0.165 -0.788 0.082 0.143
std. dev. leader rel. quality 0.431 0.291 -0.027 0.139 0.660 0.182 -0.940 0.116 0.202

Notes: The table shows the Jacobian matrix associated with the estimation of the baseline model. Each entry of the matrix reports
the percentage change in each moment given one percent increase in each parameter.

in markups across firms; (iii) An increase in either superstar innovation cost scale parameter χ or small

firm innovation cost scale parameter ν reduces the aggregate R&D intensity and output growth rate. Since

superstar innovation has a direct effect on the growth rate of the economy, the effect of χ on the output

growth rate relative to its effect on R&D intensity is larger, whereas ν has a larger impact on R&D intensity.

In addition, χ and ν have opposite implications for the level and dispersion of leader quality. Overall,

larger χ tends to reduce the innovation of superstar firms, narrowing the quality gaps between the industry

leader and other superstar firms. While higher ν increases the R&D cost of small firms, which reduces

their innovation, leading to a reallocation of market share to superstar firms and a higher heterogeneity in

qualities among superstar firms; (iv) The relative productivity of small firms ζ is identified very precisely

by matching the average markup and the labor share as we extensively discuss in Sections 5.2.1 and 7.5.

Lower ζ implies reduced competition from small firms and a within-industry market share reallocation

to superstar firms, which generates a higher average markup and lower labor share; (v) As innovation

policies in our estimated model are below unity, an increase in the R&D cost convexity parameters ϕ and ϵ

reduces the innovation cost, which increases R&D intensity and the growth rate. These two parameters,

however, have different implications for inverted-U relationship between innovation and market shares.

While ϕ strongly influences the linear coefficient of the innovation-market share regression, changes in ϵ

almost exclusively govern the location of the top point of the inverted-U relationship. The two parameters’

impacts on average profitability and the standard deviation of leader relative quality are also opposite. (vi)

τ is directly identified by targeting the entry rate of new businesses, since firm entry rate equals firm exit

rate in a stationary equilibrium. (vii) Given all other parameter values, the value of ψ is set to normalize

the measure of small firms mt to one. Its exact value hinges on the average value of small firms, which

itself is determined by the values of all other parameters. In particular, setting m = 1, we can rewrite

equation (33) to get ψ = ∑Θ ve(Θ)µ(Θ)
2τ .

SMM proceeds in the following way: For an arbitrary value of parameter vector θ = {λ, η, χ, ν, ζ, ϕ, ϵ, τ},

the dynamic problem is solved and the policy functions are generated. Then we use the policy functions

to calculate the model moments. The simulated moments estimator is defined as the solution to the
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minimization of:

θ̂ = arg min
θ

11

∑
k=1

[
momentmodel

k (θ)− momentdata
k

momentdata
k

]2

Ω̂k (46)

where momentmodel
k is the value of moment k in the model and momentdata

k is the value of the moment in

the data with weight Ω̂k.

We use a simulated annealing algorithm for minimizing the objective function. This starts with a

predefined first and second guess. For the third guess onward, it takes the best prior guess and randomizes

from this to generate a new set of parameter guesses. That is, it takes the best-fit parameters and randomly

“jumps off” from this point for its next guess. Over time the algorithm “cools”, so that the variance of the

parameter jumps falls, allowing the estimator to fine-tune its parameter estimates around the global best

fit. We restart the program with different initial conditions to ensure the estimator converges to the global

minimum.

A.5 Social Planner’s Problem

There are several distortions in the decentralized equilibrium of the economy in our model. On the

static side, the superstar firms use their market power to increase their profits through charging positive

markups. On the dynamic side, the superstars, small firms, as well as entrepreneurs all ignore their effects

on the rest of the economy: the positive contribution of their innovation to productivity growth, as well

as the negative contribution of their investments that result in business-stealing. Due to these reasons,

it is useful to solve the social planner’s problem so that we can compare the inefficient decentralized

equilibrium allocation to the Pareto-efficient allocation. In this section, we solve the problem in steps, and

undertake the comparison.

A.5.1 The Complete Social Planner’s Problem

The goal of the social planner is to maximize the lifetime utility of the representative household subject

to technological constraints. Given the initial conditions, µ0(Θ), m0, and Q0, the full problem can be stated

as follows:
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max
[[{lijt,zijt}

Njt
i=1,[lkcjt,Xkjt]

mt
k=0]

1
j=0,et]∞t=0

∫ ∞

0
e−ρt ln(Ct)dt, such that (47)

Ct + RtYt ≤ Yt (48)

Rt =
∫ (Njt

∑
i=1

χzϕ
ijt +

∫
νXϵ

kjtdk

)
dj + ψe2

t (49)

ln(Yt) =
∫ 1

0
ln(yjt)dj (50)

yjt =

(Njt

∑
i=1

y
η−1

η

ijt + ỹ
η−1

η

cjt

) η
η−1

(51)

ỹcjt =
∫

ykcjtdk (52)

yijt = qijtlijt (53)

ykcjt = qcjtlkcjt (54)∫ (Njt

∑
i=1

lijt +
∫

lkcjtdk

)
dj ≤ L = 1 (55)

qleader
jt = max{q1jt, ..., qNjt jt} (56)

qcjt = ζqleader
jt (57)

{q1jt, ..., qNjt jt} =

{
qleader

jt ,
qleader

jt

(1 + λ)n⃗jt(1)
, ...,

qleader
jt

(1 + λ)n⃗jt(Njt−1)

}
(58)

Θjt = (Njt, n⃗jt) (59)

Qt =
∫

ln(qleader
jt )dj (60)

Q̇t

Qt
= ln(1 + λ)∑

Θ
plit(Θ)µt(Θ) (61)

µ̇t(Θ) = ∑
Θ′

pt(Θ′, Θ)µt(Θ′)− ∑
Θ′

pt(Θ, Θ′)µt(Θ) (62)

∑
Θ

µt(Θ) = 1 (63)

ṁt = et − τmt (64)

where equation (48) is the resource constraint, and equation (49) is the total R&D and business creation

investment as a share of GDP. Equations (50) and (51) are respectively the final good and industry output

production functions. Equation (52) is the production of the competitive fringe in industry j at time t.
Equations (53) and (54) are the production functions of superstars and small firms. Equation (55) is the

aggregate labor feasibility constraint. Equation (56) defines the productivity of industry j leader at time t
(qleader

jt ) as the highest firm-level productivity in the industry. Equation (57) imposes that the productivity

of each small firm in the competitive fringe in industry j is a fraction ζ of the industry leader’s productivity

at any time. Equation (58) defines the vector of productivity in industry j at time t for an industry with

Njt superstar firms where n⃗jt is the vector of productivity steps between each firm in the industry and the

leader. Θjt in equation (59) is the state of industry j at time t, which can be summarized by the number of
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superstars in the industry (Njt) and the number of productivity steps between each firm and the industry

leader n⃗jt. Qt is the average (log) productivity of leaders across industries at time t (equation (60)). The

growth rate of Qt is given by equation (61) where µt(Θ) is the mass of industries in state Θ and plit(Θ) is

the arrival rate at which one of the industry leaders innovates. This arrival rate in turn depends on the

mass of small firms and innovation policies. Equation (62) is the law of motion of the industry distribution.

The first term corresponds to inflows into state Θ while the second term represents outflows. p(Θ, Θ′) is

the instantaneous flow from state Θ to Θ′ which depends on the innovation policies and the mass of small

firms in the economy. Equation (63) states that the mass of industries has to sum to one. Finally, equation

(64) is the law of motion of the mass of small firms.

The social planner maximizes welfare by choosing the labor allocation to every superstar firm i in

industry j at time t (lijt) and to every small firm k in industry j at time t (lkcjt). The social planner also

chooses the R&D innovation policies for every superstar firm (zijt) and small firm (Xkjt) as well as the entry

policy of the entrepreneurs (et). Since small firms within the fringe of a given industry are symmetric, we

can write the total labor allocation to small firms in industry j at time t as lcjt = mtlkcjt and the Poisson rate

of innovation by small firms as Xjt = mtXkjt.

This is a large problem to solve. However, it can be split into a static problem and a dynamic problem.

First, note that the final good and labor feasibility constraints (equations (48) and (55)) must bind with

equality. This is because the preferences of the representative household are increasing in consumption Ct,

and there is no disutility of labor. As a consequence, given the productivity distribution [{qijt}
Njt
i=1, qcjt]

1
j=0,

the social planner’s optimal solution must maximize total output Yt for all t, subject to the production

technologies outlined in equations (50) to (54) and the labor feasibility constraint (55). We solve this

static output maximization problem in the next subsection.

A.5.2 Static Output Maximization

Given the productivity distribution [{qijt}
Njt
i=1, qcjt]

1
j=0, the social planner’s static (log-)output maximiza-

tion problem at time t can be stated as follows:

max
[{lijt}

Njt
i=1,lcjt]

1
j=0

∫ 1

0

η

η − 1
ln

(Njt

∑
i=1

(
lijtqijt

) η−1
η +

(
lcjtqcjt

) η−1
η

)
dj, such that (65)

∫ 1

0

(Njt

∑
i=1

lijt + lcjt

)
dj = 1 (66)

This delivers the first order conditions

q
η−1

η

ijt l
− 1

η

ijt

∑
Njt
i=1

(
lijtqijt

) η−1
η +

(
lcjtqcjt

) η−1
η

= ωt, ∀i ∈ {1, ..., Njt}, ∀j ∈ [0, 1] (67)

q
η−1

η

cjt l
− 1

η

cjt

∑
Njt
i=1

(
lijtqijt

) η−1
η +

(
lcjtqcjt

) η−1
η

= ωt, ∀j ∈ [0, 1] (68)
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where ωt is the Lagrange multiplier associated with the labor feasibility constraint (66). To find the exact

labor allocations, first note the following:

ωt

(Njt

∑
i=1

lijt + lcjt

)
=

∑
Njt
i=1

(
lijtqijt

) η−1
η +

(
lcjtqcjt

) η−1
η

∑
Njt
i=1

(
lijtqijt

) η−1
η +

(
lcjtqcjt

) η−1
η

= 1 (69)

∫ 1

0
ωt

(Njt

∑
i=1

lijt + lcjt

)
dj =

∫ 1

0
1dj (70)

ωt = 1 (71)

The first equation obtained by using equations (67) and (68). The last step uses the labor feasibility

constraint (66). In turn, plugging ωt = 1 into the first equation delivers:

Njt

∑
i=1

lijt + lcjt = 1, ∀j ∈ [0, 1] (72)

This equation establishes that the total labor allocated to each industry j is always equal. Next, using

equations (67) and (68), we establish:

lijt
lkjt

=

(
qijt

qkjt

)η−1

, ∀i, k ∈ {1, ..., Njt}, ∀j ∈ [0, 1] (73)

lijt
lcjt

=

(
qijt

qcjt

)η−1

, ∀i ∈ {1, ..., Njt}, ∀j ∈ [0, 1] (74)

Combined with (72), we have:

lijt =
1

∑
Njt
k=1

(
qkjt
qijt

)η−1
+
(

qcjt
qijt

)η−1 , ∀i ∈ {1, ..., Njt}, ∀j ∈ [0, 1] (75)

lcjt =
1

∑
Njt
k=1

(
qkjt
qcjt

)η−1
+ 1

, ∀j ∈ [0, 1] (76)

This concludes finding the optimal labor allocation that maximizes output. We plug in the optimal
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solution into the production function to calculate the implied log-output:

ln(Yt) =
∫ 1

0

η

η − 1
ln

[ Njt

∑
k=1

y
η−1

η

kjt + y
η−1

η

cjt

]
dj

=
∫ 1

0
ln(ycjt) +

η

η − 1
ln

 Njt

∑
k=1

(
ykjt

ycjt

) η−1
η

+ 1

 dj

=
∫ 1

0
ln

 qcjt

∑
Njt
k=1

(
qkjt
qcjt

)η−1
+ 1

 dj +
η

η − 1

∫ 1

0
ln

[ Njt

∑
k=1

(
qkjt

qcjt

)η−1

+ 1

]
dj

=
∫ 1

0
ln(qcjt)dj +

1
η − 1

∫ 1

0
ln

[ Njt

∑
k=1

(
qkjt

qcjt

)η−1

+ 1

]
dj

= ln ζ +
∫ 1

0
ln qleader

jt dj +
1

η − 1 ∑
Θ

ln

[
N(Θ)

∑
k=1

(
qkjt

qcjt

)η−1

+ 1

]
µt(Θ)

= ln ζ +
∫ 1

0
ln qleader

jt dj + ∑
Θ

f̃t(Θ)µt(Θ)

= ln ζ + Qt + ∑
Θ

f̃t(Θ)µt(Θ)

The last line provides a closed-form solution, which establishes the efficient amount of log-output as a

function of the average productivity level of the leaders Qt, and the industry state distribution µt(Θ).

TABLE A4: SOCIAL PLANNER’S PROBLEM: STATIC WELFARE GAINS

output DE 0.824
output SPP 1.033
CEWC 25.37%

Notes: This table reports the static gains from removing all markups for the whole sample. The first row shows the level of initial
output in the decentralized equilibrium (DE). The second line reports initial output when all markups are removed (using the
decentralized equilibrium industry distribution). The third row displays the static consumption-equivalent welfare gains from
removing all markups.

Before we move on to the full dynamic problem of the social planner, we can first derive the static

welfare gain that would be obtained by removing all markups but keeping the distribution and dynamic

policies unchanged. Table A4 shows that the static welfare gains can be substantial (around 25% in

consumption equivalent terms). It is interesting to note that our model does not underestimate the static

cost of markups. If anything, our estimates are slightly larger than those found in Baqaee and Farhi (2020)

and Edmond, Midrigan, and Xu (2023).

A.5.3 Dynamic Welfare Maximization

Given the results of the static output maximization, we can greatly simplify the complete problem of

the social planner. As we would like to compare the results to the general equilibrium along a balanced

growth path, we also focus on the stationary version of the social planner’s problem, where the state

variables µ0(Θ) and m0 are initialized at their stationary values. The average productivity of the leaders,
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Q0, is initialized at 0 to remain consistent with Section 2.4. The dynamic welfare maximization problem of

the social planner can therefore be re-stated as:

max{{
{zi(Θ)}N(Θ)

i=1 ,Xk(Θ)
}

Θ
,e
}

{
ln C0

ρ
+

g
ρ2

}
, such that (77)

C0 = (1 − R)Y0 (78)

ln Y0 = ln ζ + Q0 + ∑
Θ

f̃ (Θ)µ(Θ) (79)

g = ln(1 + λ)∑
Θ

pli(Θ)µ(Θ) (80)

R = ∑
Θ

(
N(Θ)

∑
i=1

χ(zi(Θ))ϕ + νm(Xk(Θ))ϵ

)
µ(Θ) + ψe2 (81)

µ̇t(Θ) = ∑
Θ′

p(Θ′, Θ)µ(Θ′)− ∑
Θ′

p(Θ, Θ′)µ(Θ) = 0, ∀Θ (82)

∑
Θ

µt(Θ) = 1 (83)

ṁt = e − τm = 0 (84)

where initial consumption is equal to output minus R&D and business creation investment cost (equation

78), equation (79) is (log) initial output consistent with the optimal static allocation chosen by the social

planner (see Section A.5.2), g is the growth rate of output in a balanced growth path (equation (80)), R is

the share of output allocated to R&D and business creation (equation (81)), equation (82) is the law of

motion of the industry distribution, equation (83) imposes that the mass of industries in the economy is

equal to one and the dynamics of the mass of small firms is given by equation (84). In addition, those

constraints require that g, µt(Θ), and mt remain constant in a balanced growth path.

The social planner chooses the innovation policy of superstar firms ({zi(Θ)}N(Θ)
i=1 ) and small firms

(Xk(Θ)) as well as investment in new business creation (e). We can notice that this formulation of the

social planner’s problem reduces the dimensionality of the maximization problem. Instead of solving for a

continuum of continuous functions, we have reduced the problem to solving for a finite number of positive

scalars,
{{

{zi(Θ)}N(Θ)
i=1 , Xk(Θ)

}
Θ

, e
}

.

The dynamic social planner’s problem, while greatly simplified, still requires 90 (=84+6) constraints

to be satisfied. However, we can plug in all of the constraints into the objective function, and turn the

problem into an unconstrained maximization problem (except for the non-negativity constraints for the

choice variables.) It is trivial to see this is the case for equations (78) to (81), and equation (84). The

inflow-outflow equations (82) and equation (83) that determine the stationary industry state distribution

µ(Θ) are less obvious.

First, note that given the choice variables, the values p(Θ, Θ′) are constants. Therefore, the 84 equations

described by equation (82) constitute a system of 84 linear equations in µ(Θ). One of these 84 equations

is superfluous since the system is closed. Combined together with equation (83), they constitute a linear

system of 84 equations in 84 unknowns. Rewrite this system of equations in matrix form as Aµ⃗ = b, where

A is an invertible square matrix, b is a column vector, and µ⃗ is the industry state distribution written in

vector form. Hence, we have µ⃗ = A−1b. In other words, given the choice variables, the stationary industry

state distribution µ(Θ) can be obtained using matrix algebra, and the resulting values can be plugged into
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the objective function.

At the end, we are left with an unconstrained optimization problem where we need to determine the

optimal values of 253 positive scalars. We solve this problem using global optimization methods. The

results are discussed below.

A.5.4 Results from Social Planner’s Optimization

TABLE A5: SOCIAL PLANNER’S PROBLEM: DYNAMIC WELFARE GAINS

DE SPP SPP
(unconstrained) (z1 = 0)

growth rate 2.20% 5.60% 5.22%
initial output 0.824 1.009 1.021
CEWC 115.02% 97.61%

Notes: This table reports the results of the unconstrained and constrained social planner’s problems for the whole sample. The
first column reports the growth rate and initial output in the decentralized equilibrium (DE). The second column shows the
results for the unconstrained social planner’s problem (SPP) for the growth rate, initial output, and the consumption-equivalent
welfare gain compared to the decentralized equilibrium. The third column displays the same information for the constrained
social planner in which large firms in single-superstar industries perform no R&D.

In this section, we report the results of the unconstrained social planner’s problem. First, the optimal

(static) allocation corresponds to a decentralized equilibrium allocation with no markups. In addition, the

social planner chooses an industry distribution which converges to a degenerate distribution with only one

superstar firm which does all the R&D. Results comparing welfare and output between the optimal and the

decentralized allocations can be found in Table A5 for the full sample. The optimal allocation consistently

features higher initial output (static welfare gain) and growth rates (dynamic welfare gain) with large

overall welfare gains. Table A5 shows that the static welfare gains from higher initial consumption are

substantial (between 20% and 25%). It is interesting to note that our model does not underestimate

the static cost of markups. If anything, our estimates are slightly larger than those found in Baqaee and

Farhi (2020) and Edmond, Midrigan, and Xu (2023). However, despite the higher estimated static cost of

markups, we find that the dynamic benefits from increased markups easily dominates the static gains.

A.5.5 Constrained Planner’s Problem

In addition to the full social planner’s problem discussed in Section A.5.4, in this section, we report the

results from a constrained social planner’s problem where we impose that there is no superstar innovation in

industries with a single superstar firm. In the decentralized equilibrium, there is no innovation by superstars

in single superstar industries since they have no incentive to do R&D. Under the optimal allocation, however,

the distribution converges to a degenerate industry distribution with only single-superstar industries. In

addition, only the incumbent superstar performs R&D. The objective of the following exercise is to analyze

how much worse the social planner would do in terms of welfare if we impose that single superstars cannot

perform R&D, i.e., we only allow the planner to allocate R&D resources to firms which perform R&D in

the decentralized equilibrium. Results for the full sample can be found in Table A5. Once again, most of

the welfare gains are due to removing dynamic inefficiencies (as is the case for the unconstrained optimal
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allocation). In addition, a large share of the welfare difference between the optimal and decentralized

allocations can be achieved under the constrained optimal allocation with no R&D by large firms in

single-superstar industries.

A.6 Distributional Implications of the Structural Transition

Throughout our analysis, we have opted to use a representative household. However, as the empirical

findings indicate, the structural transition in the US over the last four decades decreased labor’s share of

income while driving up profits. Wealth is heavily concentrated in the US: According to the 2013 Survey of

Consumer Finances, households in the bottom 50% of the wealth distribution hold only 1% of total wealth,

whereas the top 5% hold 63% and top 1% hold 36%. Therefore, the gains from the increase in the profit

share accrue to a very small portion of the population, whereas the decline in the labor share hurts most

of the population who derive their income primarily from labor, not assets. This means the increase in

markups and the decline in the labor share can have significant distributional implications, as studied in

Boar and Midrigan (2019).

While adding a complete heterogeneous agent framework on the household side with credit market

imperfections remains beyond the scope of our paper, there are less costly ways to uncover the first-order

implications for inequality with little alteration to the model. We can separate the representative household

into two types of consumers: (1) workers, who derive all of their income from labor, and cannot own

any assets, (2) capitalists, who have no labor income, but own all assets in the economy and receive

all entrepreneurial income. With this modification, the consumption of workers along the BGP is given

by Cworker
t = ωYt, and the consumption of capitalists is given by Ccapitalist

t = Ct − Cworker
t . With these

consumption streams, we can compute the consumption equivalent welfare change (CEWC) for both types

of consumers. We can also compute how the relative consumption of the two groups, Ccapitalist/Cworker

changes in each counterfactual exercise.

The results are shown in Table A6. The first row repeats the consumption equivalent welfare change for

the representative consumer in Section 5.2, whereas the second and third rows report it for the workers

and capitalists, respectively. The last row reports the percentage change in relative consumption. In most

exercises, the welfare changes of the workers and capitalists go in the same direction, and are very close

in magnitude. Naturally, the only exception to this is the exercise where markups are reduced. When

the relative productivity of the competitive fringe, ζ, is reset to its early period value, the welfare of

the capitalists drops by 27.65%, whereas that of the workers decreases slightly by 2.10%. The relative

consumption of the capitalists goes down by 26.1%, reducing the inequality between the two groups.

Recall that the overall welfare loss was 7.6% for the representative household. This means that while

increased competition from small firms would be detrimental for the overall economy, since the gains from

innovation are not shared equally, consumers who primarily rely on labor income would be losers by a

slight margin, whereas wealthy consumers would be the obvious losers. It is also interesting to note that

workers’ welfare is higher in the early period while the reverse is true for capitalists.

It means that higher markups are not the problem, but the unequal distribution of the gains from

higher growth can be. Policies that aim to directly reduce markups through price controls or reducing

market power might be detrimental to efficiency and economic growth. Redistributing the gains from

innovation in a more equitable way through transfers can, therefore, be a more successful policy than a

17



TABLE A6: DISTRIBUTIONAL IMPLICATIONS OF THE STRUCTURAL TRANSITION

Early η Early ζ Early ν, ϵ Early χ, ϕ Early ψ, τ All

Benchmark CEWC -12.76% -7.60% 12.65% 2.05% 4.18% -5.59%
Worker CEWC -13.80% -2.10% 12.58% 1.95% 4.12% 0.36%
Capitalist CEWC -8.96% -27.65% 12.88% 2.38% 4.39% -27.30%
∆% Ccapitalist/Cworker 5.61% -26.10% 0.27% 0.42% 0.25% -27.56%

Notes: The table reports consumption-equivalent welfare change numbers for the representative consumer, as well as the idealized
workers and capitalists in the counterfactual experiments.

direct reduction in markups if the aim is to improve the well-being of the average consumer.

A.7 Extended Model with Capital Accumulation

In this section, we introduce an extension of our baseline model with endogenous capital accumulation.

In particular, we assume the following production function for the final good producer:

ln (Yt) =
∫ 1

0
ln
(

y1−κ
jt kκ

jt

)
dj (85)

where k jt is capital which depreciates at a rate δ. Households own the stock of capital (Kt =
∫ 1

0 k jt dj) and

rent it to final good producers at a rental rate Rt = rt + δ. The final good is now used for consumption,

investment in R&D, costs of new business entry, and investment in physical capital.

Profit maximization by final good producers implies:

k jt =
κYt

Rt
(86)

pijt =
(1 − κ)y

− 1
η

ijt Yt

∑
Njt
k=1 y

η−1
η

kjt + ỹ
η−1

η

cjt

(87)

where κ is the capital share of income. This implies that, in a balanced growth path, the stock of capital

grows at the same rate as aggregate output, Yt. This delivers the same system of equations in unknown

production ratios as in equation (17). Profits of superstars can be written as:

πijt =
(1 − κ)Yt[

∑
Njt
k=1

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

]2

η + ∑k ̸=i

(
ykjt
yijt

) η−1
η
+
(

ỹcjt
yijt

) η−1
η

η
(88)

Compared to the baseline model, the dynamic problem of superstar firms and small firms is only

affected by the multiplicative constant (1 − κ) that appears in the profit function of the superstar firm.

Final good production is equal to:

ln(Yt) =
∫ 1

0
ln qleader

jt dj + ln ζ − ln ω + ∑ f (Θ)µ(Θ) + ln(1 − κ) +
κ

1 − κ
[ln(κ)− ln(Rt)] (89)
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The law of motion for capital is given by K̇t = It − δKt, where It is investment in physical capital at

time t. We can show that the investment-to-GDP ratio is equal to:

It

Yt
=

κ(rt − ρ + δ)

rt + δ
(90)

which is constant in a balanced growth path. The equation for the growth rate remains the same. The level

of initial consumption, C0, becomes:

C0 = Y0
C0

Y0
= Y0

(
1 −

∫ 1

0

Nj0

∑
i=1

χzϕ
ij0 dj −

∫ 1

0
νXϵ

j0 dj − ψe2
0 −

I0

Y0

)
(91)

A.8 Algorithm for Computing Stationary Equilibria

Define φ = [ρ, λ, η, ζ, ν, ϵ, χ, ϕ, ψ, τ] as the vector of structural parameters of the economy. Select values

for the maximum productivity steps allowed between superstars, n̄ ∈ Z+, and the maximum number of

superstars per industry, N̄ ∈ Z+. Without loss of generality, normalize the initial average log productivity

of the leaders Qt =
∫ 1

0 ln qleader
j0 dj = 0. The goal is to compute the unique stationary Markov-Perfect

Equilibrium associated with the parameter vector φ using the baseline model (i.e., the unique balanced

growth path equilibrium). Below, we describe an algorithm that can be used for this purpose.

1. Guess an initial value for the stationary mass of small firms mold > 0.

2. Repeat the following until the stationary mass of small firms m converges; i.e., ∥mold − mnew∥ < ϵm

for some tolerance value ϵm > 0:

(a) Calculate the quantities, prices, static profit flows, and markups of all firms in each industry-

state Θ ∈ Θ̂ that arise as a result of static product market competition. (Solve a system of

N non-linear equations given by equations 17 and 18 for each industry state, where N is the

number of superstar firms.)

(b) Guess an initial value for the normalized stationary superstar value function vold(ni, N).

(c) Repeat the following value function iteration until the normalized stationary superstar value

function v(ni, N). converges; i.e., ∥vold(.)− vnew(.)∥ < ϵv for some tolerance value ϵv > 0:

i. Using the guess for the normalized stationary superstar value function vold(.), use equation

24 to calculate the implied optimal level of superstar innovation zi(.) for all possible firm

states.

ii. Using the guess for the normalized stationary superstar value function vold(.), use equation

27 to calculate the implied optimal level of small firm innovation Xkj(.) for all possible

industry states. Multiply it with the stationary mass of small firms mold to calculate total

small firm innovation Xj(.) for all possible firm states.

iii. Using the guess for the normalized stationary superstar value function vold(.) and the

calculated values for innovation policy functions zi(.) and Xj(.), calculate a new guess for

the normalized stationary superstar value function vnew(.) using equation 23.
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iv. Check if the normalized stationary superstar value function has converged (∥vold(.) −
vnew(.)∥ < ϵv). If true, save the normalized stationary superstar value function v(.),
and the associated innovation policy functions zi(.) and Xj(.), and exit. If false, update

vold(.) = ξvnew(.) + (1 − ξ)vold(.), and go back to step (i).65

(d) Using the innovation policy functions zi(.) and Xj(.), construct the instantaneous flow matrix

p(Θ, Θ′) for all Θ, Θ′ ∈ Θ̂.

(e) In a stationary equilibrium, the mass of industries of type Θ denoted as µ(Θ) must be time-

invariant. Using the system of linear equations defined by the instantaneous flow matrix

p(Θ, Θ′), dµ(Θ)
dt = 0, ∀Θ ∈ Θ̂, and ∑Θ µ(Θ) = 1, calculate the equilibrium value of µ(Θ) for all

industry states. Standard linear equation solvers work well.

(f) Using the normalized stationary superstar value function v(.), calculate the normalized station-

ary small firm value function ve(.) for all possible industry states using equation 28.

(g) Using the normalized stationary small firm value function ve(.) and the stationary industry state

distribution µ(.), calculate the implied stationary mass of small firms mnew using equation 33.

(h) Check if the stationary mass of small firms has converged (∥mold − mnew∥ < ϵm). If true, the

stationary equilibrium has been found; exit. If false, update mnew using a bisection algorithm,

and go back to step (a).

3. Calculate other allocations and statistics of interest as necessary, given the equilibrium values of the

stationary mass of small firms m and the stationary industry state distribution µ(.).

A.9 Non-Stationary Equilibria

In this section, we describe the algorithm used to compute non-stationary equilibria of our model, and

repeat the quantitative experiments in Table 2 while taking transitional dynamics into account.

A.9.1 Algorithm for Computing Non-Stationary Equilibria

Define φi = [ρi, λi, ηi, ζi, νi, ϵi, χi, ϕi, ψi, τi] as the vector of structural parameters of economy i. Suppose

an economy is initially at its stationary equilibrium implied by the initial parameter values φb, where

b stands for the beginning. Without loss of generality, normalize the initial average log productivity of

the leaders Qt =
∫ 1

0 ln qleader
j0 dj = 0. At time t = 0, the vector of structural parameters of the economy

changes from φb to φe, where e stands for the end. As t → ∞, the economy will converge to the stationary

equilibrium implied by the final parameter values φe. To compute the described non-stationary equilibrium,

we need to characterize the full transition path of all prices and allocations in the economy. Below, we

describe the algorithm used for this purpose.

1. Compute the stationary equilibrium implied by the initial parameter vector φb. Call the associated

time-invariant mass of small firms mb, and the time-invariant industry-state distribution µb(Θ).

2. Compute the stationary equilibrium implied by the final parameter vector φe. Call the associated

time-invariant mass of small firms me, and the time-invariant industry-state distribution µe(Θ).

65ξ ∈ (0, 1] is an update weight. ξ = 0.05 works well.
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3. Define T > 0 as the amount of time (measured in years) for which the time paths of allocations and

prices will be computed. T must be large enough such that the state variables µt(Θ) and mt are

sufficiently close to their stationary values; i.e., ∥µT(Θ)− µe(Θ)∥ < ϵµe(Θ) and ∥mT − me∥ < ϵme for

some tolerance values ϵµe(Θ), ϵme > 0 where ∥.∥ denotes the sup-norm. Choose a value for T — e.g.,

T = 1000.

4. Divide the time interval [0, T] into a uniform grid with step size ∆t > 0. Denote the resultant (discrete)

time grid as t⃗ = {s∆t}S
s=0 with S = T/∆t. A lower grid step size ∆t increases approximation accuracy

(discussed below) at the cost of computation time.

5. Create an initial guess for the time path of the mass of small firms over the time grid. A reasonable

initial guess is a linear interpolation with boundary values m0 = mb and mT = me. Call this initial

guess m⃗old. Initialize a guess for the time path of the growth rate of C/Y, g⃗C/Y,old, at zero.

6. Repeat the following until the time path of the mass of small firms m⃗ and g⃗C/Y converge; i.e.,

∥m⃗old − m⃗new∥ < ϵm⃗ and ∥g⃗C/Y,old − g⃗C/Y,new∥ < ϵg⃗C/Y
for some tolerance values ϵm⃗, ϵg⃗C/Y

> 0:

(a) Calculate the quantities, prices, static profit flows, and markups of all firms in each industry-

state Θ ∈ Θ̂ that arise as a result of static product market competition. (Solve a system of N
non-linear equations for each industry-state, where N is the number of superstar firms.)

(b) Denote the time path of the normalized superstar firm value function as v⃗ = {vs(ni, N)}S
s=0.

Given the convergence of the state variables, vS(ni, N) ≈ ve(ni, N). Set vS(ni, N) = ve(ni, N).

We know v̇t(ni, N) = lim∆t→0
vt+∆t(ni ,N)−vt(ni ,N)

∆t . Then v̇t(ni, N) ≈ vt+∆t(ni ,N)−vt(ni ,N)
∆t , where the

approximation is more accurate for smaller values of ∆t. Plugging this approximate value into

equation (22) yields an equation linking vs(.) to vs+1(.). Starting from s = S, use backward

iteration to obtain the time path of the normalized superstar firm value function v⃗, along

with the time paths of superstar innovation policy function z⃗ = {zis(ni, N)}S
s=0 and small firm

innovation policy function X⃗ = {Xkjs(Θj)}S
s=0.

(c) The initial value of the industry-state distribution at time t = 0 is determined by the value in

the initial stationary equilibrium, µ0(Θ) = µb(Θ), ∀Θ ∈ Θ̂. Unlike a stationary equilibrium,

the inflow and outflow rates for each industry-state Θ are now time-varying. Using the

values obtained for z⃗ and X⃗, starting from s = 0, construct the time paths of inflows to

(∑Θ′ pt(Θ′, Θ)µt(Θ′)) and outflows from (∑Θ′ pt(Θ, Θ′)µt(Θ)) each industry-state Θ ∈ Θ̂ and

the resultant time path of the industry-state distribution µ⃗ = {µs(Θ)}S
s=0 using forward iteration.

This yields µT(Θ) = µS(Θ).

(d) Using v⃗ and X⃗, construct the time path of expected profit flows of small firms in each industry-

state Θ, denoted π⃗e = {πe
s(Θ)}S

s=0.

(e) Denote the time path of the normalized small firm value function as v⃗e = {ve
s(ni, N)}S

s=0. Given

the convergence of the state variables, ve
S(ni, N) ≈ ve

e(ni, N). Set ve
S(ni, N) = ve

e(ni, N). We

know v̇e
t(ni, N) = lim∆t→0

ve
t+∆t(ni ,N)−ve

t (ni ,N)
∆t . Then v̇e

t(ni, N) ≈ ve
t+∆t(ni ,N)−ve

t (ni ,N)
∆t , where the

approximation is more accurate for smaller values of ∆t. Plugging this approximate value into

equation (25) yields an equation linking ve
s(.) to ve

s+1(.). Starting from s = S, use backward

iteration to obtain the time path of the normalized small firm value function v⃗e.
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(f) Using the time paths of the industry-state distribution µ⃗ and the small firm value function

v⃗e, solve for the time path of the small business creation rate e⃗ = {es}S
s=0 consistent with

entrepreneur profit maximization.

(g) The mass of small firms at time t = 0 is determined by the value in the initial stationary

equilibrium, m0 = mb. Starting from s = 0, calculate the new time path of the mass of small

firms m⃗new through forward iteration using e⃗ and the exogenous small firm exit rate τ.

(h) Calculate the time path of the relative wage rate ω⃗ using the static product market competition

results and µ⃗.

(i) Calculate the time path of the output growth rate g⃗ using equation (34). Calculate the time

path of the average log productivity level of industry leaders Q⃗ through forward iteration.

(j) Calculate other allocations and statistics of interest as necessary. To calculate lifetime utility of

the representative consumer at time t = 0: Calculate the initial output Y0, and the time path of

aggregate output Y⃗ using g⃗. Calculate the time paths of aggregate R&D intensity and business

creation costs to derive the time path of the consumption-to-output ratio. Using all, calculate

the time path of aggregate consumption C⃗. Plug C⃗ into the utility function of the representative

consumer to obtain lifetime utility at time t = 0. Update the guess for the time path of the

growth rate of C/Y, g⃗C/Y,new.

(k) Check if the time paths of the mass of small firms and gC/Y have converged. If true, exit. If

false, update m⃗old = ξm⃗new + (1 − ξ)m⃗old, g⃗C/Y,old = g⃗C/Y,new, and go back to step (a).66

7. Check if the state variables have converged (∥µT(Θ)− µe(Θ)∥ < ϵµe(Θ) and ∥mT − me∥ < ϵme). If

true, the non-stationary equilibrium is found. If false, either increase T or decrease ∆t, and go back

to step 5.

A.9.2 Disentangling the Structural Transition with Non-Stationary Dynamics

In this section, we repeat the quantitative experiments in Table 2 while taking transitional dynamics

into account. Before we conduct the counterfactual experiments, we need to compute the realized non-

stationary equilibrium between 1976 and 2005 in the US. To do so, we use the estimated parameter values

from the early period sub-sample as φb, and those from the late period sub-sample as φe, and compute the

baseline non-stationary equilibrium following the algorithm described in the preceding subsection. All

consumption-equivalent welfare numbers in the following counterfactual experiments use the lifetime

utility of the representative consumer at time t = 0 in this baseline economy as the yardstick.

As in Table 2, we conduct six separate counterfactual experiments. The initial vector of structural

parameters φb is always the same, and uses the estimated parameter values from the early period sub-

sample. The final vector of structural parameters φe is changed in each experiment. These are listed below

in sequence:

1. Early η: φe = [ρ, λlate, ηearly, ζ late, νlate, ϵlate, χlate, ϕlate, ψlate, τlate]

2. Early ζ: φe = [ρ, λlate, ηlate, ζearly, νlate, ϵlate, χlate, ϕlate, ψlate, τlate]

66ξ ∈ (0, 1] is an update weight. ξ = 0.5 works well.
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3. Early ν, ϵ: φe = [ρ, λlate, ηlate, ζ late, νearly, ϵearly, χlate, ϕlate, ψlate, τlate]

4. Early χ, ϕ: φe = [ρ, λlate, ηlate, ζ late, νlate, ϵlate, χearly, ϕearly, ψlate, τlate]

5. Early ψ, τ: φe = [ρ, λlate, ηlate, ζ late, νlate, ϵlate, χlate, ϕlate, ψearly, τearly]

6. Early all: φe = [ρ, λearly, ηearly, ζearly, νearly, ϵearly, χearly, ϕearly, ψearly, τearly]

Table A7 presents the resultant consumption-equivalent welfare change numbers. First, looking at the

final column, the welfare difference between the realized transition and the counterfactual of remaining in

the early steady-state in perpetuum is now calculated to be -11.43%, as opposed to -5.59% in the baseline

analysis.

TABLE A7: DISENTANGLING THE STRUCTURAL TRANSITION WITH NON-STATIONARY DYNAMICS

Early η Early ζ Early ν, ϵ Early χ, ϕ Early ψ, τ All

CEWC -8.04% -1.63% 2.82% 0.92% 0.64% -11.43%

The individual experiments themselves also maintain the same signs as in Table 2, but the quantitative

magnitudes change in some cases. In the first experiment, the welfare loss in the counterfactual economy

with the early period elasticity of substitution η is now 8.04% instead of 12.76%. In the second experiment

where the relative productivity of the competitive fringe ζ is held constant, we find that the dynamic gains

in welfare associated with higher markups still dominate the static losses in efficiency, albeit with a smaller

magnitude. This is because the increase in aggregate productivity growth takes time to fully manifest due

to the time it takes for the industry-state distribution µt(Θ) to converge to its stationary value, whereas

the static losses from a less productive competitive fringe are instantaneous. The third column shows that

restoring the R&D efficiency of small firms back to its early-period value is still welfare-enhancing, but

the value is now lower at 2.82% as opposed to 12.65%. The impact of the decline in the R&D efficiency

of superstar firms is calculated as 0.92%, which is slightly smaller than the 2.05% found in the baseline.

Finally, the total effect of keeping new business creation costs and firm exit rate the same as in the early

period sub-sample is now a wash on average, where the welfare barely moves at 0.64%, compared to the

4.18% value found in the baseline.

To summarize, the overall message remains the same: the primary driver that lies behind the observed

increase in the average markup, the fall in the relative productivity of small firms, is still welfare-enhancing

since the dynamic gains from improved productivity growth still dominate the static losses from lower

static allocative efficiency.
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B Additional Tables and Figures

TABLE B1: FIRM INNOVATION AND RELATIVE SALES – WITHOUT ADDITIONAL CONTROLS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 21.552 18.515 37.897 42.305
(0.965)*** (1.058)*** (1.467)*** (1.588)***

relative sales sq. -19.613 -16.749 -32.732 -37.443
(1.165)*** (1.333)*** (1.881)*** (2.010)***

R2 0.10 0.07 0.17 0.18
N 182,968 182,968 182,968 182,968

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 5.605 9.209 13.053 8.114
(0.240)*** (0.354)*** (0.323)*** (0.275)***

relative sales sq. -4.719 -7.907 -11.966 -7.247
(0.288)*** (0.430)*** (0.436)*** (0.329)***

R2 0.34 0.31 0.57 0.45
N 182,968 182,968 99,482 182,968

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 14.843 17.343 0.017 0.056 0.085
(0.290)*** (0.213)*** (0.015) (0.012)*** (0.014)***

relative sales sq. -13.732 -16.034 -0.037 -0.071 -0.104
(0.417)*** (0.308)*** (0.019)* (0.016)*** (0.019)***

R2 0.65 0.58 0.04 0.04 0.04
N 64,091 180,076 165,392 150,097 168,734

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1976 to 2004 at the annual frequency. All regressions control for year dummies and a full set of four-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B2: FIRM INNOVATION AND RELATIVE EMPLOYMENT

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative employment 6.821 5.908 7.094 16.539
(1.110)*** (1.293)*** (1.718)*** (1.836)***

relative employment sq. -6.692 -5.728 -5.346 -14.595
(1.310)*** (1.642)*** (2.085)** (2.241)***

R2 0.15 0.10 0.26 0.25
N 101,853 101,853 101,853 101,853

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative employment 2.088 3.445 1.185 0.886
(0.187)*** (0.294)*** (0.088)*** (0.076)***

relative employment sq. -1.572 -2.766 -1.031 -0.812
(0.229)*** (0.353)*** (0.110)*** (0.096)***

R2 0.57 0.50 0.96 0.94
N 101,853 101,853 59,829 101,853

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative employment 9.368 11.247 0.214 0.265 0.288
(0.337)*** (0.228)*** (0.019)*** (0.016)*** (0.020)***

relative employment sq. -8.715 -10.355 -0.193 -0.243 -0.263
(0.434)*** (0.295)*** (0.024)*** (0.020)*** (0.025)***

R2 0.71 0.68 0.13 0.12 0.13
N 36,987 100,605 99,912 96,718 100,690

Notes: This table replicates the results in Table A2 where relative sales is replaced with relative employment. Robust asymptotic
standard errors reported in parentheses are clustered at the firm level. The sample period is from 1976 to 2004 at the annual
frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock, firm age, the coefficient of
variation of the firm’s stock price, year dummies, and a full set of four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p <
0.05, ∗p < 0.1.
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TABLE B3: FIRM INNOVATION AND RELATIVE TOTAL ASSETS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative total assets 8.693 7.966 9.437 18.534
(1.123)*** (1.338)*** (1.762)*** (1.854)***

relative total assets sq. -8.555 -7.718 -7.669 -16.079
(1.360)*** (1.754)*** (2.231)*** (2.325)***

R2 0.15 0.10 0.26 0.25
N 104,911 104,911 104,911 104,911

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative total assets 2.149 3.631 1.381 0.967
(0.192)*** (0.297)*** (0.091)*** (0.080)***

relative total assets sq. -1.450 -2.717 -1.223 -0.896
(0.271)*** (0.400)*** (0.117)*** (0.108)***

R2 0.57 0.50 0.96 0.94
N 104,911 104,911 61,186 104,911

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative total assets 9.855 12.073 0.272 0.257 0.407
(0.329)*** (0.224)*** (0.019)*** (0.016)*** (0.021)***

relative total assets sq. -9.092 -11.065 -0.259 -0.246 -0.381
(0.429)*** (0.296)*** (0.024)*** (0.020)*** (0.026)***

R2 0.72 0.69 0.12 0.12 0.13
N 37,779 103,558 102,726 96,718 103,598

Notes: This table replicates the results in Table A2 where relative sales is replaced with relative total assets. Robust asymptotic
standard errors reported in parentheses are clustered at the firm level. The sample period is from 1976 to 2004 at the annual
frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock, firm age, the coefficient of
variation of the firm’s stock price, year dummies, and a full set of four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p <
0.05, ∗p < 0.1.
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TABLE B4: FIRM INNOVATION AND RELATIVE SALES – SIC3 FIXED EFFECTS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 5.879 4.976 7.035 15.018
(1.162)*** (1.356)*** (1.788)*** (1.900)***

relative sales sq. -6.422 -5.499 -5.508 -13.491
(1.436)*** (1.783)*** (2.239)** (2.398)***

R2 0.14 0.10 0.25 0.24
N 104,911 104,911 104,911 104,911

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 1.774 2.932 0.967 0.798
(0.191)*** (0.299)*** (0.093)*** (0.080)***

relative sales sq. -1.216 -2.258 -0.862 -0.773
(0.264)*** (0.397)*** (0.121)*** (0.111)***

R2 0.55 0.49 0.96 0.94
N 104,911 104,911 61,186 104,911

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 9.280 10.648 0.212 0.165 0.217
(0.374)*** (0.259)*** (0.019)*** (0.016)*** (0.020)***

relative sales sq. -8.942 -10.188 -0.200 -0.155 -0.207
(0.491)*** (0.335)*** (0.024)*** (0.020)*** (0.026)***

R2 0.68 0.65 0.12 0.11 0.12
N 37,779 103,558 102,726 96,718 103,598

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1976 to 2004 at the annual frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock,
firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of three-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B5: FIRM INNOVATION AND RELATIVE SALES – SIC2 FIXED EFFECTS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 3.825 2.677 7.088 13.541
(1.306)*** (1.513)* (1.769)*** (1.982)***

relative sales sq. -3.714 -2.455 -4.576 -11.063
(1.613)** (1.976) (2.424)* (2.705)***

R2 0.13 0.08 0.23 0.22
N 104,911 104,911 104,911 104,911

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 1.698 2.702 0.728 0.700
(0.214)*** (0.332)*** (0.089)*** (0.078)***

relative sales sq. -1.149 -1.983 -0.662 -0.695
(0.333)*** (0.494)*** (0.114)*** (0.109)***

R2 0.53 0.47 0.95 0.94
N 104,911 104,911 61,186 104,911

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 8.691 9.670 0.150 0.120 0.160
(0.397)*** (0.295)*** (0.017)*** (0.015)*** (0.019)***

relative sales sq. -8.341 -9.405 -0.140 -0.114 -0.154
(0.524)*** (0.425)*** (0.023)*** (0.019)*** (0.024)***

R2 0.63 0.58 0.11 0.11 0.12
N 37,779 103,558 102,726 96,718 103,598

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1976 to 2004 at the annual frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock,
firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of two-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B6: FIRM INNOVATION AND RELATIVE SALES – FIRM FIXED EFFECTS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 6.181 4.026 6.030 11.929
(1.817)*** (2.298)* (2.701)** (2.735)***

relative sales sq. -5.310 -2.986 -3.321 -9.253
(1.913)*** (2.485) (3.098) (2.952)***

R2 0.44 0.34 0.52 0.50
N 104,911 104,911 104,911 104,911

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 1.160 2.261 1.604 0.930
(0.217)*** (0.357)*** (0.179)*** (0.132)***

relative sales sq. -0.794 -1.665 -1.195 -0.729
(0.244)*** (0.388)*** (0.207)*** (0.150)***

R2 0.86 0.78 0.98 0.97
N 104,911 104,911 61,186 104,911

Panel C

log(xad) log(capx) sale growth employment growth asset growth

relative sales 5.058 6.120 0.557 0.229 0.261
(0.455)*** (0.285)*** (0.044)*** (0.035)*** (0.047)***

relative sales sq. -3.973 -4.881 -0.475 -0.198 -0.226
(0.537)*** (0.310)*** (0.047)*** (0.036)*** (0.048)***

R2 0.95 0.91 0.31 0.28 0.29
N 37,779 103,558 102,726 96,718 103,598

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from 1976
to 2004 at the frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock, firm age, the
coefficient of variation of the firm’s stock price, year dummies, and firm fixed effects. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B7: FIRM INNOVATION AND RELATIVE SALES – TRADABLE INDUSTRIES

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 7.333 6.403 6.156 19.557
(1.689)*** (2.019)*** (2.771)** (2.816)***

relative sales sq. -7.266 -6.581 -3.886 -16.519
(2.051)*** (2.628)** (3.350) (3.365)***

R2 0.16 0.10 0.24 0.23
N 62,621 62,621 62,621 62,621

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 2.735 4.354 1.197 1.165
(0.291)*** (0.447)*** (0.113)*** (0.120)***

relative sales sq. -1.941 -3.290 -1.014 -1.105
(0.355)*** (0.530)*** (0.141)*** (0.153)***

R2 0.58 0.50 0.96 0.94
N 62,621 62,621 41,296 62,621

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 9.089 10.090 0.225 0.167 0.232
(0.436)*** (0.289)*** (0.023)*** (0.019)*** (0.026)***

relative sales sq. -8.300 -9.196 -0.189 -0.148 -0.191
(0.566)*** (0.369)*** (0.028)*** (0.023)*** (0.030)***

R2 0.79 0.74 0.13 0.12 0.15
N 21,140 61,913 61,247 58,266 61,859

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample is restricted to firms
that operate in tradable industries which consist of agriculture, forestry, and fishing (01-09), mining (10-14), and manufacturing
(20-39), where the numbers in parentheses refer to the two-digit SIC codes. All regressions control for profitability, leverage,
market-to-book ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of
four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B8: FIRM INNOVATION AND RELATIVE SALES – NON-TRADABLE INDUSTRIES

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 6.369 5.777 8.067 9.357
(1.583)*** (1.738)*** (2.029)*** (2.398)***

relative sales sq. -5.803 -4.941 -6.592 -6.439
(1.775)*** (2.180)** (2.361)*** (3.044)**

R2 0.08 0.07 0.12 0.10
N 41,189 41,189 41,189 41,189

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 0.603 1.330 0.848 0.347
(0.206)*** (0.356)*** (0.153)*** (0.093)***

relative sales sq. -0.147 -0.705 -0.745 -0.267
(0.404) (0.608) (0.222)*** (0.135)**

R2 0.34 0.27 0.95 0.92
N 41,189 41,189 19,293 41,189

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 12.398 13.662 0.244 0.182 0.226
(0.500)*** (0.362)*** (0.034)*** (0.028)*** (0.035)***

relative sales sq. -11.695 -12.556 -0.255 -0.184 -0.237
(0.638)*** (0.477)*** (0.042)*** (0.033)*** (0.044)***

R2 0.65 0.63 0.15 0.14 0.17
N 16,375 40,578 40,421 37,493 40,655

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample is restricted to firms
that operate in nontradable industries which consist of construction (15-17), transportation and public utilities (40-49), wholesale
trade (50-51), retail trade (52-59), finance, insurance, and real estate (60-67), services (70-89), and public administration
(91-98), where the numbers in parentheses refer to the two-digit SIC codes. All regressions control for profitability, leverage,
market-to-book ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of
four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B9: FIRM INNOVATION AND RELATIVE SALES – EARLY SAMPLE (1976-1994)

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 5.508 5.163 7.746 16.394
(1.605)*** (1.891)*** (1.895)*** (2.610)***

relative sales sq. -6.255 -6.285 -6.581 -14.999
(1.886)*** (2.417)*** (2.304)*** (3.166)***

R2 0.18 0.13 0.23 0.29
N 59,236 59,236 59,236 59,236

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 1.757 2.913 1.216 0.791
(0.236)*** (0.376)*** (0.109)*** (0.092)***

relative sales sq. -1.045 -2.046 -0.994 -0.691
(0.334)*** (0.498)*** (0.145)*** (0.128)***

R2 0.61 0.55 0.97 0.95
N 59,236 59,236 32,673 59,236

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 9.337 10.916 0.271 0.219 0.319
(0.353)*** (0.262)*** (0.024)*** (0.020)*** (0.025)***

relative sales sq. -8.501 -10.013 -0.268 -0.221 -0.309
(0.482)*** (0.339)*** (0.030)*** (0.025)*** (0.032)***

R2 0.78 0.72 0.13 0.12 0.12
N 25,308 58,521 57,742 54,622 58,132

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1976 to 1994 at the annual frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock,
firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of four-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B10: FIRM INNOVATION AND RELATIVE SALES – LATE SAMPLE (1995-2005)

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 7.747 5.361 14.412 9.819
(1.292)*** (1.494)*** (2.546)*** (1.519)***

relative sales sq. -7.483 -5.039 -10.516 -7.252
(1.567)*** (1.865)*** (3.250)*** (1.978)***

R2 0.14 0.10 0.28 0.21
N 49,522 49,522 49,522 49,522

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 2.670 3.925 1.794 1.405
(0.246)*** (0.339)*** (0.139)*** (0.122)***

relative sales sq. -1.869 -2.961 -1.586 -1.329
(0.318)*** (0.431)*** (0.179)*** (0.176)***

R2 0.54 0.45 0.95 0.94
N 49,522 49,522 31,004 49,522

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 14.715 14.154 0.226 0.174 0.226
(0.577)*** (0.299)*** (0.032)*** (0.027)*** (0.035)***

relative sales sq. -14.015 -13.226 -0.172 -0.141 -0.187
(0.776)*** (0.408)*** (0.042)*** (0.034)*** (0.046)***

R2 0.72 0.68 0.14 0.13 0.15
N 14,063 48,881 44,984 42,096 45,466

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from
1995 to 2005 at the annual frequency. All regressions control for profitability, leverage, market-to-book ratio, log R&D stock,
firm age, the coefficient of variation of the firm’s stock price, year dummies, and a full set of four-digit SIC industry dummies.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE B11: INDUSTRY INNOVATION AND MARKET CONCENTRATION (HHI) – BASELINE SPECIFICATION

(INVERTED-U HYPOTHESIS TEST)

Panel A: Total Innovation by Industry

patent count total citations tail count original count general count

lower bound
t-value 3.488 4.195 4.415 2.583 2.084
P>|t| 0.000 0.000 0.000 0.005 0.019

upper bound
t-value -2.472 -2.612 -2.377 -1.352 -1.470
P>|t| 0.007 0.005 0.009 0.088 0.071

Panel B: Industry Average of Total Innovation by Firms

patent count total citations tail count original count general count

lower bound
t-value 2.008 2.853 3.004 1.528 2.889
P>|t| 0.022 0.002 0.001 0.063 0.002

upper bound
t-value -2.617 -3.658 -3.605 -1.426 -2.989
P>|t| 0.004 0.000 0.000 0.077 0.001

Panel C: Industry Average of Average Innovation Quality by Firms

avg. citations tail innov avg. orginality avg. generality

lower bound
t-value 4.172 3.219 3.340 3.158
P>|t| 0.000 0.001 0.000 0.001

upper bound
t-value -3.271 -1.944 -1.088 -2.492
P>|t| 0.001 0.026 0.138 0.006

Notes: To further check the robustness of the inverted-U relationship between industry innovation and market concentration,
we test whether or not the slope of the fitted curve is positive at the start and negative at the end of the interval of the market
concentration following Lind and Mehlum (2010). This table reports the hypothesis testing results.
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TABLE B12: FIRM INNOVATION AND RELATIVE SALES – BASELINE SPECIFICATION (INVERTED-U HYPOTHESIS

TEST)

Panel A

avg. citations tail innov avg. orginality avg. generality

lower bound
t-value 6.614 4.952 4.625 9.277
P>|t| 0.000 0.000 0.000 0.000

upper bound
t-value -4.246 -2.779 -1.442 -4.020
P>|t| 0.000 0.003 0.075 0.000

Panel B

log total patents log total citations log R&D Spending log R&D spending 2

lower bound
t-value 10.671 11.494 14.158 12.012
P>|t| 0.000 0.000 0.000 0.000

upper bound
t-value -2.048 -3.256 -6.363 -5.808
P>|t| 0.020 0.001 0.000 0.000

Panel C

log(xad) log(capx) sales growth employment growth asset growth

lower bound
t-value 31.841 52.415 12.784 11.965 12.938
P>|t| 0.000 0.000 0.000 0.000 0.000

upper bound
t-value -16.054 -25.941 -6.824 -6.877 -7.018
P>|t| 0.000 0.000 0.000 0.000 0.000

Notes: To further check the robustness of the inverted-U relationship between firm innovation and relative sales, we test whether
or not the slope of the fitted curve is positive at the start and negative at the end of the interval of relative sales following Lind
and Mehlum (2010). This table reports the hypothesis testing results.
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TABLE B13: MODEL PARAMETERS AND TARGET MOMENTS — LATER SUBSAMPLE (2006-2016)

A. Parameter estimates

Parameter Description Values

λ innovation step size 0.2607
η elasticity within industry 6.5806
χ superstar cost scale 34.3063
ν small firm cost scale 1.8523
ζ competitive fringe ratio 0.5150
ϕ superstar cost convexity 3.1140
ϵ small firm cost convexity 1.9713
τ exit rate 0.0833
ψ entry cost scale 0.0240

B. Moments

Target moments Data Model

growth rate 1.45% 1.67%
R&D intensity 2.70% 2.67%
average markup 1.4856 1.4855
std. dev. markup 0.508 0.454
labor share 0.613 0.611
firm entry rate 0.083 0.083
β(innovation, relative sales) 0.579 0.701
top point (intra-industry) 0.463 0.420
average profitability 0.163 0.230
average leader relative quality 0.765 0.649
std. dev. leader relative quality 0.213 0.160

Notes: The estimation is done with the simulated method of moments. Panel A reports the estimated parameters. Panel B
reports the simulated and actual moments. We rely on patent citation data from UVA Darden Global Corporate Patent Dataset to
construct the innovation-related data moments (Bena, Ferreira, Matos, and Pires (2017)). We exclude the years 2007-2009 when
constructing the data moment for the output growth rate to exclude the effect of the Great Recession.
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TABLE B14: DISENTANGLING THE STRUCTURAL TRANSITION — LATER SUBSAMPLE (2006-2016)

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 1.67% 1.41% -15.35% 1.17% -30.01% 2.04% 22.09%
R&D intensity 2.67% 2.49% -6.46% 1.44% -45.92% 3.94% 47.98%
average markup 1.486 1.503 1.21% 1.327 -10.65% 1.488 0.19%
std. dev. markup 0.454 0.435 -4.12% 0.378 -16.75% 0.424 -6.63%
labor share 0.611 0.600 -1.76% 0.668 9.41% 0.603 -1.30%
entry rate 0.083 0.083 0.00% 0.083 0.00% 0.083 0.00%
β(innov, relative sales) 0.701 0.521 -25.62% 0.673 -3.95% 0.990 41.25%
top point (intra-industry) 0.420 0.384 -8.71% 0.413 -1.68% 0.436 3.84%
avg. profitability 0.230 0.245 6.29% 0.172 -25.22% 0.228 -1.17%
avg. leader relative quality 0.649 0.714 9.97% 0.726 11.91% 0.487 -25.00%
std. dev. leader rel. quality 0.160 0.189 18.05% 0.193 20.50% 0.106 -34.04%

superstar innovation 0.146 0.120 -18.13% 0.100 -31.95% 0.225 53.69%
small firm innovation 0.012 0.004 -61.91% 0.005 -56.55% 0.066 467.53%
output share of superstars 0.564 0.600 6.42% 0.444 -21.17% 0.618 9.60%
avg. superstars per industry 2.022 1.753 -13.28% 1.749 -13.52% 3.220 59.27%
mass of small firms 1.000 0.569 -43.12% 0.553 -44.71% 1.886 88.60%
initial output 0.808 0.744 -8.01% 0.829 2.58% 0.840 3.88%
CE Welfare change -13.56% -8.36% 12.38%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 1.67% 2.04% 22.19% 1.75% 4.41% 2.19% 30.87%
R&D intensity 2.67% 2.70% 1.38% 2.82% 5.94% 2.07% -22.31%
average markup 1.486 1.482 -0.26% 1.487 0.12% 1.301 -12.40%
std. dev. markup 0.454 0.452 -0.39% 0.450 -0.90% 0.325 -28.31%
labor share 0.611 0.612 0.18% 0.609 -0.26% 0.628 2.79%
entry rate 0.083 0.083 0.00% 0.114 37.22% 0.114 37.22%
β(innov, relative sales) 0.701 0.677 -3.38% 0.705 0.64% 0.683 -2.52%
top point (intra-industry) 0.420 0.423 0.61% 0.423 0.67% 0.462 9.93%
avg. profitability 0.230 0.229 -0.53% 0.231 0.19% 0.162 -29.42%
avg. leader relative quality 0.649 0.630 -2.85% 0.628 -3.14% 0.607 -6.42%
std. dev. leader rel. quality 0.160 0.161 0.44% 0.149 -6.94% 0.140 -12.66%

superstar innovation 0.146 0.187 27.84% 0.155 5.94% 0.180 23.13%
small firm innovation 0.012 0.020 71.74% 0.014 19.93% 0.028 139.75%
output share of superstars 0.564 0.566 0.34% 0.572 1.39% 0.483 -14.34%
avg. superstars per industry 2.022 2.173 7.47% 2.109 4.32% 2.412 19.28%
mass of small firms 1.000 1.394 39.40% 1.327 32.68% 1.000 0.00%
initial output 0.808 0.808 -0.06% 0.813 0.59% 0.769 -4.88%
CE Welfare change 9.59% 2.29% 8.88%

Notes: The table reports the change in model moments when setting the parameter of interest back to its estimated level in early
sub-sample while keeping other parameters fixed at their estimated values in the later sub-sample.
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TABLE B15: MODEL PARAMETERS AND TARGET MOMENTS — CRRA UTILITY

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2933 0.3140
η elasticity within industry 20.4221 6.4435
χ superstar cost scale 105.5469 72.8941
ν small firm cost scale 1.3751 2.4345
ζ competitive fringe ratio 0.5987 0.5354
ϕ superstar cost convexity 3.8834 3.6608
ϵ small firm cost convexity 2.7628 2.4430
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0102 0.0268

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.21% 2.31% 2.31%
R&D intensity 2.40% 2.07% 2.50% 2.42%
average markup 1.3014 1.3143 1.4442 1.4391
std. dev. markup 0.306 0.332 0.421 0.444
labor share 0.656 0.623 0.644 0.611
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.671 0.631 0.767
top point (intra-industry) 0.443 0.456 0.515 0.445
average profitability 0.136 0.169 0.152 0.211
average leader relative quality 0.751 0.608 0.746 0.652
std. dev. leader relative quality 0.224 0.142 0.222 0.160

Notes: We estimate the model with CRRA preferences using the simulated method of moments. Panel A reports the estimated
parameters. Panel B reports the simulated and actual moments.
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TABLE B16: DISENTANGLING THE STRUCTURAL TRANSITION — CRRA UTILITY

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.12% -8.14% 2.04% -11.39% 2.54% 10.28%
R&D intensity 2.42% 2.41% -0.28% 1.84% -23.77% 2.80% 15.86%
average markup 1.439 1.441 0.10% 1.336 -7.18% 1.443 0.29%
std. dev. markup 0.444 0.416 -6.47% 0.386 -13.06% 0.433 -2.53%
labor share 0.611 0.605 -0.96% 0.647 5.83% 0.607 -0.69%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.767 0.683 -11.02% 0.768 0.18% 0.809 5.53%
top point (intra-industry) 0.445 0.432 -2.79% 0.443 -0.29% 0.457 2.68%
avg. profitability 0.211 0.218 3.42% 0.171 -18.56% 0.212 0.73%
avg. leader relative quality 0.652 0.697 6.98% 0.682 4.64% 0.573 -12.15%
std. dev. leader rel. quality 0.160 0.171 6.94% 0.170 6.32% 0.135 -15.79%

superstar innovation 0.178 0.155 -13.06% 0.153 -13.82% 0.219 22.74%
small firm innovation 0.022 0.012 -43.83% 0.016 -26.91% 0.045 104.83%
output share of superstars 0.521 0.554 6.21% 0.449 -13.93% 0.545 4.56%
avg. superstars per industry 2.196 1.940 -11.66% 2.048 -6.75% 2.731 24.35%
mass of small firms 1.000 0.710 -28.98% 0.792 -20.81% 1.214 21.35%
initial output 0.805 0.739 -8.22% 0.827 2.75% 0.818 1.72%
CE Welfare change -12.20% -2.94% 6.88%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.40% 3.97% 2.41% 4.46% 2.21% -4.24%
R&D intensity 2.42% 2.35% -2.83% 2.55% 5.58% 2.07% -14.36%
average markup 1.439 1.439 -0.02% 1.441 0.13% 1.314 -8.67%
std. dev. markup 0.444 0.443 -0.19% 0.440 -0.95% 0.332 -25.22%
labor share 0.611 0.611 -0.01% 0.609 -0.29% 0.623 1.98%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.767 0.740 -3.55% 0.766 -0.09% 0.671 -12.59%
top point (intra-industry) 0.445 0.443 -0.40% 0.449 0.90% 0.456 2.50%
avg. profitability 0.211 0.211 0.40% 0.211 0.42% 0.169 -19.74%
avg. leader relative quality 0.652 0.646 -0.94% 0.623 -4.43% 0.608 -6.68%
std. dev. leader rel. quality 0.160 0.161 0.59% 0.149 -6.81% 0.142 -11.55%

superstar innovation 0.178 0.188 5.68% 0.192 7.81% 0.185 3.96%
small firm innovation 0.022 0.024 10.63% 0.028 26.47% 0.027 20.13%
output share of superstars 0.521 0.523 0.28% 0.531 1.75% 0.495 -5.05%
avg. superstars per industry 2.196 2.243 2.13% 2.358 7.39% 2.372 8.03%
mass of small firms 1.000 1.066 6.64% 1.452 45.19% 1.000 0.00%
initial output 0.805 0.805 0.08% 0.810 0.67% 0.767 -4.71%
CE Welfare change 2.28% 2.93% -6.53%

Notes: Using the model with CRRA preferences, we carry out the same experiments as in the baseline. The table reports the
changes in model moments when setting parameters of interest back to their estimated levels in the early sub-sample while
keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE B17: DISENTANGLING THE STRUCTURAL TRANSITION — WITH CAPITAL

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.07% -10.39% 1.83% -20.99% 2.74% 18.28%
R&D intensity 1.99% 1.89% -5.07% 1.24% -37.68% 2.65% 33.02%
average markup 1.444 1.448 0.24% 1.320 -8.56% 1.450 0.39%
std. dev. markup 0.452 0.425 -6.01% 0.381 -15.74% 0.438 -3.25%
labor share 0.610 0.604 -1.06% 0.653 6.98% 0.605 -0.92%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.783 0.706 -9.94% 0.795 1.42% 0.838 7.01%
top point (intra-industry) 0.448 0.435 -2.91% 0.443 -1.01% 0.466 4.16%
avg. profitability 0.210 0.219 4.35% 0.166 -21.04% 0.209 -0.49%
avg. leader relative quality 0.678 0.720 6.18% 0.728 7.42% 0.569 -16.02%
std. dev. leader rel. quality 0.165 0.176 6.78% 0.181 9.40% 0.130 -21.06%

superstar innovation 0.169 0.145 -13.86% 0.129 -23.48% 0.230 36.16%
small firm innovation 0.019 0.011 -41.25% 0.011 -41.58% 0.052 175.60%
output share of superstars 0.516 0.549 6.25% 0.429 -16.89% 0.547 6.04%
avg. superstars per industry 2.090 1.874 -10.33% 1.868 -10.59% 2.819 34.89%
mass of small firms 1.000 0.719 -28.13% 0.667 -33.28% 1.387 38.71%
initial output 0.883 0.821 -7.06% 0.921 4.30% 0.896 1.42%
CE Welfare change -12.24% -6.53% 11.57%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.39% 3.14% 2.46% 6.37% 2.19% -5.40%
R&D intensity 1.99% 1.97% -0.97% 2.17% 9.05% 1.59% -20.04%
average markup 1.444 1.444 0.02% 1.446 0.14% 1.301 -9.88%
std. dev. markup 0.452 0.451 -0.31% 0.448 -0.91% 0.325 -28.06%
labor share 0.610 0.610 -0.07% 0.609 -0.29% 0.628 2.87%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.783 0.748 -4.55% 0.775 -1.06% 0.683 -12.82%
top point (intra-industry) 0.448 0.447 -0.28% 0.452 0.98% 0.462 3.17%
avg. profitability 0.210 0.211 0.40% 0.210 0.01% 0.162 -22.74%
avg. leader relative quality 0.678 0.668 -1.48% 0.649 -4.31% 0.607 -10.44%
std. dev. leader rel. quality 0.165 0.164 -0.70% 0.154 -6.72% 0.140 -15.27%

superstar innovation 0.169 0.177 4.85% 0.184 9.24% 0.180 6.75%
small firm innovation 0.019 0.021 11.64% 0.024 27.35% 0.028 46.31%
output share of superstars 0.516 0.519 0.55% 0.525 1.74% 0.483 -6.46%
avg. superstars per industry 2.090 2.149 2.82% 2.239 7.16% 2.412 15.41%
mass of small firms 1.000 1.074 7.38% 1.438 43.84% 1.000 0.00%
initial output 0.883 0.883 0.05% 0.886 0.37% 0.913 3.35%
CE Welfare change 1.86% 3.82% -1.69%

Notes: Using the model with endogenous physical capital accumulation in Appendix A.7, we carry out the same experiments as in
the baseline. The table reports the changes in model moments when setting parameters of interest back to their estimated levels
in the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE B18: MODEL PARAMETERS AND TARGET MOMENTS — COST-WEIGHTED MARKUPS

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2854 0.3055
η elasticity within industry 20.6825 6.8640
χ superstar cost scale 105.9986 73.6554
ν small firm cost scale 1.3957 2.5565
ζ competitive fringe ratio 0.6130 0.5620
ϕ superstar cost convexity 3.8583 3.6532
ϵ small firm cost convexity 3.2012 2.6433
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0111 0.0246

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.20% 2.31% 2.30%
R&D intensity 2.40% 2.17% 2.50% 2.49%
average markup (cost-weighted) 1.1793 1.2187 1.2470 1.2764
std. dev. markup 0.306 0.314 0.421 0.410
labor share 0.656 0.631 0.644 0.625
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.702 0.631 0.765
top point (intra-industry) 0.443 0.471 0.515 0.451
average profitability 0.136 0.158 0.152 0.192
average leader relative quality 0.751 0.568 0.746 0.628
std. dev. leader relative quality 0.224 0.131 0.222 0.154

Notes: We re-estimate the baseline model using cost-weighted markups. The estimation is done with the simulated method of
moments. Panel A reports the estimated parameters. Panel B reports the simulated and actual moments.
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TABLE B19: DISENTANGLING THE STRUCTURAL TRANSITION — COST-WEIGHTED MARKUPS

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.30% 2.07% -9.86% 2.04% -11.36% 2.57% 11.55%
R&D intensity 2.49% 2.28% -8.57% 1.86% -25.51% 3.10% 24.49%
average markup (cost-weighted) 1.276 1.278 0.16% 1.221 -4.31% 1.285 0.66%
average markup (sales-weighted) 1.392 1.382 -0.73% 1.314 -5.61% 1.396 0.31%
std. dev. markup (sales-weighted) 0.410 0.380 -7.39% 0.365 -11.02% 0.400 -2.41%
labor share 0.625 0.624 -0.16% 0.653 4.50% 0.621 -0.65%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.765 0.690 -9.79% 0.759 -0.83% 0.849 11.03%
top point (intra-industry) 0.451 0.439 -2.76% 0.447 -0.92% 0.465 3.05%
avg. profitability 0.192 0.195 1.65% 0.163 -15.13% 0.191 -0.45%
avg. leader relative quality 0.628 0.678 7.93% 0.657 4.66% 0.536 -14.70%
std. dev. leader rel. quality 0.154 0.166 8.09% 0.164 6.50% 0.124 -19.49%

superstar innovation 0.186 0.157 -15.62% 0.160 -14.15% 0.238 27.94%
small firm innovation 0.027 0.015 -46.26% 0.019 -29.04% 0.062 128.51%
output share of superstars 0.503 0.525 4.39% 0.443 -11.84% 0.527 4.84%
avg. superstars per industry 2.323 2.021 -12.99% 2.157 -7.15% 3.033 30.59%
mass of small firms 1.000 0.672 -32.81% 0.766 -23.42% 1.318 31.78%
initial output 0.812 0.748 -7.81% 0.830 2.23% 0.825 1.60%
CE Welfare change -12.70% -3.60% 7.88%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.30% 2.40% 4.13% 2.39% 3.77% 2.20% -4.43%
R&D intensity 2.49% 2.49% 0.03% 2.65% 6.48% 2.17% -12.83%
average markup (cost-weighted) 1.276 1.277 0.03% 1.279 0.20% 1.219 -4.52%
average markup (sales-weighted) 1.392 1.392 -5.58E-05 1.393 0.10% 1.292 -7.20%
std. dev. markup 0.410 0.409 -0.26% 0.407 -0.64% 0.314 -23.31%
labor share 0.625 0.625 -0.03% 0.624 -0.20% 0.631 0.91%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.765 0.736 -3.74% 0.772 0.89% 0.702 -8.21%
top point (intra-industry) 0.451 0.451 -0.15% 0.456 0.94% 0.471 4.31%
avg. profitability 0.192 0.192 0.17% 0.192 -0.02% 0.158 -17.77%
avg. leader relative quality 0.628 0.618 -1.54% 0.604 -3.79% 0.568 -9.48%
std. dev. leader rel. quality 0.154 0.154 0.06% 0.145 -5.81% 0.131 -14.71%

superstar innovation 0.186 0.198 6.48% 0.199 6.83% 0.199 6.64%
small firm innovation 0.027 0.031 12.95% 0.033 22.70% 0.039 44.38%
output share of superstars 0.503 0.505 0.45% 0.510 1.33% 0.485 -3.53%
avg. superstars per industry 2.323 2.396 3.15% 2.472 6.42% 2.646 13.90%
mass of small firms 1.000 1.090 9.01% 1.360 35.95% 1.000 0.00%
initial output 0.812 0.813 0.13% 0.815 0.44% 0.774 -4.61%
CE Welfare change 2.53% 2.48% -6.70%

Notes: Using the reestimated baseline model targeting cost-weighted markups, we carry out the same experiments as in the
baseline. The table reports the changes in model moments when setting parameters of interest back to their estimated levels in
the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE B20: MODEL PARAMETERS AND TARGET MOMENTS — WITHOUT MARKUP-BASED TARGETS

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2869 0.3117
η elasticity within industry 19.4859 6.6690
χ superstar cost scale 104.8459 69.7572
ν small firm cost scale 1.3992 2.3629
ζ competitive fringe ratio 0.6111 0.5563
ϕ superstar cost convexity 3.8765 3.6370
ϵ small firm cost convexity 2.8704 2.4661
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0099 0.0222

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.18% 2.31% 2.29%
R&D intensity 2.40% 2.08% 2.50% 2.43%
labor share 0.656 0.631 0.644 0.623
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.681 0.631 0.770
top point (intra-industry) 0.443 0.462 0.515 0.448
average profitability 0.136 0.159 0.152 0.195
average leader relative quality 0.751 0.597 0.746 0.652
std. dev. leader relative quality 0.224 0.140 0.222 0.160

Notes: We re-estimate the model after dropping the average markup and the standard deviation of markups from the set of
targeted moments. The estimation is done with the simulated method of moments. Panel A reports the estimated parameters.
Panel B reports the simulated and actual moments.
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TABLE B21: DISENTANGLING THE STRUCTURAL TRANSITION — WITHOUT MARKUP-BASED TARGETS

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.29% 2.00% -12.49% 1.98% -13.54% 2.60% 13.38%
R&D intensity 2.43% 2.17% -10.51% 1.75% -27.82% 3.05% 25.47%
labor share 0.623 0.623 -0.10% 0.653 4.83% 0.619 -0.69%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.770 0.712 -7.62% 0.772 0.17% 0.828 7.44%
top point (intra-industry) 0.448 0.437 -2.53% 0.444 -0.93% 0.464 3.41%
avg. profitability 0.195 0.198 1.59% 0.164 -15.98% 0.194 -0.33%
avg. leader relative quality 0.652 0.706 8.31% 0.685 5.14% 0.562 -13.71%
std. dev. leader rel. quality 0.160 0.175 9.36% 0.171 7.28% 0.131 -17.99%

average markup 1.401 1.389 -0.81% 1.316 -6.04% 1.405 0.33%
std. dev. markup 0.421 0.390 -7.38% 0.372 -11.72% 0.411 -2.41%
superstar innovation 0.177 0.147 -17.23% 0.149 -16.04% 0.227 28.08%
small firm innovation 0.022 0.012 -46.42% 0.015 -31.71% 0.051 129.17%
output share of superstars 0.500 0.520 4.08% 0.437 -12.63% 0.525 4.89%
avg. superstars per industry 2.196 1.915 -12.81% 2.028 -7.65% 2.818 28.34%
mass of small firms 1.000 0.671 -32.91% 0.749 -25.06% 1.310 30.99%
initial output 0.808 0.744 -7.97% 0.828 2.44% 0.822 1.66%
CE Welfare change -14.09% -4.53% 9.04%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.29% 2.42% 5.62% 2.40% 4.65% 2.18% -4.64%
R&D intensity 2.43% 2.44% 0.44% 2.60% 7.19% 2.08% -14.34%
labor share 0.623 0.623 -0.05% 0.622 -0.22% 0.631 1.23%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.770 0.738 -4.19% 0.770 -0.09% 0.681 -11.66%
top point (intra-industry) 0.448 0.448 -0.17% 0.453 0.93% 0.462 2.99%
avg. profitability 0.195 0.195 0.18% 0.195 0.01% 0.159 -18.63%
avg. leader relative quality 0.652 0.641 -1.68% 0.627 -3.81% 0.597 -8.47%
std. dev. leader rel. quality 0.160 0.159 -0.25% 0.150 -5.98% 0.140 -12.42%

average markup 1.401 1.401 0.00% 1.402 0.12% 1.293 -7.70%
std. dev. markup 0.421 0.420 -0.29% 0.418 -0.69% 0.319 -24.34%
superstar innovation 0.177 0.192 8.02% 0.190 7.43% 0.189 6.71%
small firm innovation 0.022 0.026 16.60% 0.028 23.63% 0.030 34.88%
output share of superstars 0.500 0.503 0.52% 0.507 1.44% 0.480 -4.02%
avg. superstars per industry 2.196 2.272 3.46% 2.336 6.35% 2.446 11.36%
mass of small firms 1.000 1.109 10.94% 1.370 36.97% 1.000 0.00%
initial output 0.808 0.810 0.15% 0.812 0.49% 0.773 -4.38%
CE Welfare change 3.41% 3.01% -6.55%

Notes: Using the re-estimated model without markup-based targets, we carry out the same experiments as in the baseline. The
table reports the changes in model moments when setting parameters of interest back to their estimated levels in the early
sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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FIGURE B1: INNOVATION POLICY FUNCTION (N=4)
Notes: This figure displays the optimal innovation policy functions followed by the firms in an industry with four superstars. Each
subfigure corresponds to the fourth competitor being a certain number of steps behind the current firm.
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(A) GROWTH RATE (B) R&D INTENSITY

(C) LABOR SHARE (D) ENTRY RATE

(E) AVERAGE MARKUP (F) SUPERSTAR COUNT

FIGURE B2: TRANSITIONAL DYNAMICS: EARLY TO LATE PERIOD

Notes: This figure illustrates the time paths of selected variables over time during the transition from the early to the late period
stationary equilibrium.
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(A) GROWTH RATE (B) R&D INTENSITY

(C) LABOR SHARE (D) ENTRY RATE

(E) AVERAGE MARKUP (F) SUPERSTAR COUNT

FIGURE B3: TRANSITIONAL DYNAMICS: LATE TO LATER PERIOD

Notes: This figure illustrates the time paths of selected variables over time during the transition from the late to the later period
stationary equilibrium.
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C Model Extension: Letting Small Firms Have Positive Profits

This section derives the static equilibrium conditions and the level of output for two alternative models:

(i) decreasing returns to scale in production technology (for both small firms and superstars), and (ii)

letting the small firms in the competitive fringe collude, and thereby act as if they were a superstar with

the productivity of the fringe ζqleader
jt . In both cases, we depart from the baseline model in which small

firms were making zero profits.

C.1 Decreasing Returns to Scale

In this section, we introduce decreasing returns to labor in the production function of superstar and

small firms so that the production function for a superstar now reads yijt = qijtlα
ijt and yckjt = qcjtlα

ckjt for a

small firm, with α < 1. The rest of the model is kept unchanged.

α < 1 implies that small firms also make positive profits in equilibrium. We can rederive the first order

conditions for both superstars and small firms. Starting with superstar firms, we obtain:

yijt = αα

(
Yt

wt

)α (η − 1
η
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(92)

The relative output between two superstar firms in the same industry is given by the solution to:
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Small firms in the fringe are price takers and charge a price equal to marginal cost so that each small

firm in the fringe produces:

yckjt =
Yα

t αα

wα
t mα

jt

(
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k=1

ykjt
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η−1
η + 1

)α qcjt (94)

Total output of the competitive fringe is thus equal to:

ỹcjt = mjtyckjt =
m1−α

jt Yα
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This implies that the output ratio between any superstar firm and the total output of the fringe is equal



to:
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Note that small firms charge no markups and that the markup of superstar firms as a function of relative

output is unchanged compared to our baseline model:
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Even though small firms do not charge a markup over marginal cost, both superstars and small firms

make positive profits in equilibrium, which are respectively given by:

πijt =
Yt[
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πckjt = (1 − α)
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mjt
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) (99)

Dynamically, the value functions for both entrepreneurs and superstar firms remain unchanged. For

small firms in the competitive fringe, the value function now includes an additional term related to the

static profit that small firms make with decreasing returns to scale:

rVe(Θj) = max
Xkj

πckjt + XkjV({ñj − n̄} ∪ {−n̄}, Nj + 1)− τVe(Θj)− νXϵ
kjY

+∑
Θ′

p(Θj, Θ′)(Ve(Θ′)− Ve(Θj)) + V̇e(Θj) (100)

Small firm innovation policy is still given by:

Xkj =

(
v({ñj − n̄} ∪ {−n̄}, Nj + 1)

νϵ

) 1
ϵ−1

. (101)

Finally, we can derive the level of aggregate output at any time t as:
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We estimate this model with decreasing returns to scale for both the early and late periods, and repeat

our counterfactual experiments to assess whether any of our results crucially depends on the zero-profit

assumption for the competitive fringe. The details of the estimation and the counterfactual experiments

can be found in Tables L16 and L7, respectively.

Our baseline results are maintained even when small firms earn a profit. A decline in competition

among superstars and from small firms (declines in η and ζ) still improves growth and welfare, and the

change in the relative productivity of the competitive fringe ζ continues to be responsible for the increase

in the average markup despite the fact that small firms are now making positive profits. Ideas are also still

getting harder to find for both small and large firms, and the effect is once again larger for the small firms,

as it was in the baseline.

In our baseline model in which small firms do not make profits, these firms have an incentive to

perform innovation in order to reap future expected profits as a superstar firm. In the alternative model

with decreasing returns to scale, small firms now make positive profits even before becoming a superstar.

Adding positive profits for small firms therefore increases their value compared to the baseline model.

Consequently, the new business creation decision of the entrepreneurs is affected by the positive profits of

the fringe firms, which in turn affects the stationary mass of small firms in the counterfactual experiments.

The most important difference between the baseline model and the alternative model with decreasing

returns to scale is how much total innovation by the fringe firms responds to changes in parameter values

in the counterfactual experiments. Once we let fringe firms have positive current profits, expected future

profits from becoming a superstar no longer totally dominate the value of small firms. Consequently,

the value of small firms are now less elastic to changes in the value of the superstar firm they try to

become. And when the value of small firms is less elastic, so is the new business creation decision of the

entrepreneurs, and the consequent stationary mass of small firms. Comparing Table L7 in the Revision

Appendix against Table 2 in the main text, we see that the mass of small firms responds much less to

parameter value changes in absolute terms, and therefore, the response of small firm innovation is also
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more muted. However, the direction of the change in small firm innovation remains the same in the

experiments of interest, and none of our conclusions regarding the total effect on aggregate growth or

welfare change. In conclusion, all our main results go through regardless of whether we let the fringe firms

make positive or zero profits, although the exact quantitative magnitudes change.

C.2 Colluding Fringe

We assume that the firms in the competitive fringe collude and behave as a single superstar firm

statically. Dynamically, the model assumptions remain unchanged as small firms invest in innovation in

order to create a new differentiated variety and become a superstar firm on their own.

Statically, this is equivalent to assuming that there is one additional superstar firm in each industry

(and no competitive fringe). The system of equations that needs to be solved is unchanged regarding

superstar relative output. The only difference is the equilibrium output of the fringe, as the fringe now

solves the same problem as a superstar firm, i.e., it interacts strategically with other firms. The total output

of the fringe in equilibrium is given by:
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The relative output between the colluding fringe and any superstar i is thus given by:
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ỹcjt

) 1
η

=
qijt

qcjt

∑l ̸=i

(
yl jt
yijt

) η−1
η
+
(
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We can further derive the level of aggregate output Yt at any time using:
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+ 1


 dj

=
∫ 1

0

ln
(
(η − 1)qcjt

ηωt

)
+ ln

 Njt

∑
k=1

(
yijt

ỹcjt

) η−1
η

+
2 − η

η − 1
ln

Njt

∑
i=1

(
yijt

ỹcjt

) η−1
η

+ 1

 dj
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We use this alternative model for some quantitative experiments which demonstrate that moving from

the baseline model to this alternative model with positive markups and profits for the competitive fringe

lowers allocative efficiency across all industry states. Furthermore, repeating the welfare decomposition for

the static impact of the ζ counterfactual experiment found in the first two columns of Table 3 in the main

text, we find that this strengthens our baseline result that the dynamic losses from lower growth dominate

the static gains from reverting ζ to its early period value. To obtain the first result, we did the following:

we calculated log industry output in each industry state using the baseline model that was estimated using

the whole sample, as well as the early and late period subsamples. Then, using the same parameter values,

we calculated the log industry output in each industry state using the alternative model with the colluding

fringe. The three subfigures of Figure L3 in the Revision Appendix plot the log industry output in the

baseline model minus that in the alternative model for each industry state for the three estimations, where

the size of a dot indicates the fraction of the industry state µ(Θ) in the stationary equilibrium. We find that

the allocative efficiency is higher in the baseline model compared to the alternative with the colluding

fringe.

Why is this the case? While the fringe in the baseline uses up more inputs, shifting sales away from

more productive superstars towards themselves, they also charge no markups. In the alternative model

with the colluding fringe, the fringe produces less, but now they are charging positive markups, the effect

of which on industry output is negative. Which effect dominates is a quantitative question, and our

experiment reveals that the latter dominates. It is also worth noting that this effect holds across all industry

states. As can be seen in Figure L3, log industry output is always higher in all industry states using the

baseline model, regardless of which estimation we use.

To obtain the second result, we use the alternative model with the colluding fringe. We repeat the

counterfactual experiment in which we start from the late period estimation, and set the productivity

of the competitive fringe ζ back to its value in the early period. We reproduce the first two columns of

Table 3 in the main text. The new results can be found in Table L12 in the Revision Appendix. While

the quantitative magnitudes change, it is still true that reverting ζ back to its early value increases static

allocative efficiency. The total consumption-equivalent welfare change is still positive at 3.55% as opposed

to 4.13% in the baseline model. The directions of all the individual components are also the same. This

reduction in the static positive impact of increasing ζ strengthens our baseline results in the sense that the

dynamic loss would dominate even more if small firms made positive profits and charged markups. Total

welfare losses from an increase in the relative productivity of the fringe are thus magnified.
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D Model Extension: Multi-Product Firms

This section derives the dynamic problem of superstar firms when we allow them to own multiple

products (instead of single-product firms in the baseline model). To do so, we allow superstar firms to

invest in so-called “expansion” innovation which, if successful, allows the firm to enter a new market.

As for successful small firms, we assume that a successful small firm enters the market as the smallest

superstar (i.e., n̄ below the industry leader). Unlike small firms, superstar expansion innovation is not

directed. That is, a superstar is randomly allocated to one industry upon successful expansion innovation

as in Klette and Kortum (2004) or Akcigit and Kerr (2018) among many others. The rest of the model is

unchanged. This implies that the within-industry static equilibrium as well as the dynamic problems of

entrepreneurs and small firms are unaffected by the extension to multi-product superstar firms. The main

changes apply to the dynamic problem of superstar firms which now have to decide how much to invest in

expansion innovation.

D.1 Dynamic problem of the superstar firms

We now assume that superstar firms can invest in expansion innovation as well. The cost for superstar i
of generating a Poisson rate Xi,EXP of success in expansion innovation is given by χEXPXϕEXP

i,EXPH1−ϕEXP

i Y,

where χEXP > 0, ϕEXP > 1 and Hi is the number of products in firm i’s (active) portfolio. Upon successful

expansion innovation, a superstar firm is randomly allocated to an industry and starts as the smallest

superstar firm (i.e., n̄ steps below the leader).67

The relevant state variables for a firm i can be summarized by the vectors of the number of productivity

steps between superstar firm i and every other superstar firm k ∈ {(1, 2, ..., Njt)\{i}} in each of the

industries in which firm i is operating. Letting nk
ij ∈ {−n̄,−n̄ + 1, ..., n̄ − 1, n̄} be the number of steps by

which firm i in industry j leads firm k, the relevant state variables for firm i are given by the collection of

vectors nij = {nk
ij}k ̸=i and Nj = |nij|+ 1 for all industries j in which the firm is operating.68 Recalling that

Hi is the number of industries in which the firm is operating and letting Hi be the set of such industries, a

superstar firm i chooses an innovation rate (zij) for all industries j ∈ Hi and a rate of expansion innovation

Xi,EXP to maximize the value of the firm given by:

rV({nij}j∈Hi , {Nj}j∈Hi , Hi) = max
{zih}h∈Hi

,Xi,EXP
∑

h∈Hi

[
π(nih, Nh)− χzϕ

ihY
]
− χEXPXϕEXP

i,EXP H1−ϕEXP

i Y

+ ∑
h∈Hi

zih

[
V({nij}j∈Hi\{nk

ih = n̄}+ 1h, {Nj}j∈Hi − |{nk
ih = n̄}|, Hi)− V({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+ ∑

h∈Hi

∑
k:nk

ih=−n̄

zkh
[
V({nij}j∈Hi\{nih}, {Nj}j∈Hi\{Nh}, Hi − 1)− V({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+ ∑

h∈Hi

∑
k:nk

ih ̸=−n̄

zkh

[
V({nij}j∈Hi\{nk

ih} ∪ {nk
ih − 1}\{nl

ih = n̄ + nk
ih}, {Nj}j∈Hi − |{nl

ih = n̄ + nk
ih}|, Hi)− V({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+Xi,EXPKi

+ ∑
h∈Hi

Xh
[
V({nij}j∈Hi ∪ {min {n̄, n̄ + min(nih)}}, {Nj}j∈Hi\{Nh} ∪ min(Nh + 1, N̄), Hi)− V({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+V̇({nij}j∈Hi , {Nj}j∈Hi , Hi)

67We assume that if the superstar is allocated to an industry which already has N̄ firms, then the superstar does not enter.
68We can rewrite the relative productivity of firm i and k as qij

qkj
= (1 + λ)nk

ij .
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where 1h is a collection of vectors (of appropriate dimension) whose elements are equal to one if the

industry is h and zero otherwise. The rate of creation of a new superstar firm in any industry now

depends on the innovation of small firms in the fringe and of superstar firms’ expansion innovation i.e.

Xj = Xcj +
∫
F Xi,EXPdi where F is the set of active superstar firms in the economy. Ki is the expected gain

from being successful at expansion innovation for firm i and is given by:69

Ki =
∫ 1

0
V({nij}j∈Hi ∪ {{ñl − n̄} ∪ {−n̄}}, {Nj}j∈Hi ∪ {Nl + 1}, Hi + 1Nl<N̄)dl − V({nij}j∈Hi , {Nj}j∈Hi , Hi)

where ñl = nkl where k denotes a productivity leader in industry l.
We can guess and verify that V({nij}j∈Hi , {Nj}j∈Hi , Hi) = v({nij}j∈Hi , {Nj}j∈Hi , Hi)Y and rewrite:

ρv({nij}j∈Hi , {Nj}j∈Hi , Hi) = max
{zih}h∈Hi

,Xi,EXP
∑

h∈Hi

[
π(nih, Nh)

Y
− χzϕ

ih

]
− χEXPXϕEXP

i,EXP H1−ϕEXP

i

+ ∑
h∈Hi

zih

[
v({nij}j∈Hi\{nk

ih = n̄}+ 1h, {Nj}j∈Hi − |{nk
ih = n̄}|, Hi)− v({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+ ∑

h∈Hi

∑
k:nk

ih=−n̄

zkh
[
v({nij}j∈Hi\{nih}, {Nj}j∈Hi\{Nh}, Hi − 1)− v({nij}j∈Hi , {Nj}j∈Hi , Hi)

]
+ ∑

h∈Hi

∑
k:nk

ih ̸=−n̄

zkh

[
v({nij}j∈Hi\{nk

ih} ∪ {nk
ih − 1}\{nl

ih = n̄ + nk
ih}, {Nj}j∈Hi − |{nl

ih = n̄ + nk
ih}|, Hi)− v({nij}j∈Hi , {Nj}j∈Hi , Hi)

]

+Xi,EXP
Ki

Y
+ ∑

h∈Hi

Xh
[
v({nij}j∈Hi ∪ {min {n̄, n̄ + min(nih)}}, {Nj}j∈Hi\{Nh} ∪ min(Nh + 1, N̄), Hi)− v({nij}j∈Hi , {Nj}j∈Hi , Hi)

]

We can derive the optimal innovation policy for superstar firms as:

zih =

[
v({nij}j∈Hi\{nk

ih = n̄}+ 1h, {Nj}j∈Hi − |{nk
ih = n̄}|, Hi)− v({nij}j∈Hi , {Nj}j∈Hi , Hi)

χϕ

] 1
ϕ−1

Xi,EXP

Hi
=

[
Ki

χEXPϕEXPY

] 1
ϕEXP−1

We can notice that expansion R&D effort scales linearly with firm size as measured by the number of

products.

We can further guess and verify that we can write

v({nij}j∈Hi , {Nj}j∈Hi , Hi) = ∑
h∈Hi

ṽ(nih, Nh)

i.e., the value of the firm can be written as the sum across all the products in the firm’s portfolio of the

value of owning that specific product, which is itself only a function of the number of firms and the relative

productivities in that industry.

Optimal innovation policies become:

69We must keep in mind that this takes into account the fact that new firms cannot enter industries in which N = N̄.
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zih =

[
ṽ(nih\{nk

ih = n̄}+ 1, Nh − |{nk
ih = n̄}|)− ṽ(nih, Nh)

χϕ

] 1
ϕ−1

Xi,EXP

Hi
=

[ ∫ 1
0 ṽ({ñl − n̄} ∪ {−n̄}, Nl + 1))dl

χEXPϕEXP

] 1
ϕEXP−1

The value function can then be rewritten as:

ρ ∑
h∈Hi

ṽ(nih, Nh) = ∑
h∈Hi

π(nih, Nh)

Y

− ∑
h∈Hi

χ

[
ṽ(nih\{nk

ih = n̄}+ 1, Nh − |{nk
ih = n̄}|)− ṽ(nih, Nh)

χϕ

] ϕ
ϕ−1

− ∑
h∈Hi

χEXP

[ ∫ 1
0 ṽ({ñl − n̄} ∪ {−n̄}, Nl + 1))dl

χEXPϕEXP

] ϕEXP

ϕEXP−1

+ ∑
h∈Hi

[
ṽ(nih\{nk

ih = n̄}+ 1, Nh − |{nk
ih = n̄}|)− ṽ(nih, Nh)

χϕ

] 1
ϕ−1 [

ṽ(nih\{nk
ih = n̄}+ 1, Nh − |{nk

ih = n̄}|)− ṽ(nih, Nh)
]

+ ∑
h∈Hi

∑
k:nk

ih=−n̄

zkh(−ṽ(nih, Nh))

+ ∑
h∈Hi

∑
k:nk

ih ̸=−n̄

zkh

[
ṽ(nij\{nk

ih} ∪ {nk
ih − 1}\{nl

ih = n̄ + nk
ih}, Nh − |{nl

ih = n̄ + nk
ih}|)− ṽ(nih, Nh)

]

+ ∑
h∈Hi

[ ∫ 1
0 ṽ({ñl − n̄} ∪ {−n̄}, Nl + 1))dl

χEXPϕEXP

] 1
ϕEXP−1 [∫ 1

0
ṽ({ñl − n̄} ∪ {−n̄}, Nl + 1))dl

]
+ ∑

h∈Hi

Xh [ṽ(nih ∪ {min {n̄, n̄ + min(nih)}}, min(Nh + 1, N̄))− ṽ(nih, Nh)]

imposing ṽ(·, x) = 0 for all x > N̄.

This verifies our guess. As a result, value functions ṽ(nih, Nh) can be solved industry by industry.
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E Model Extension: Bertrand Competition

Without differentiated goods, which is the most common assumption in the literature, Cournot and

Bertrand competition differ substantially, since Bertrand competition with homogeneous goods implies that

the industry leader captures the whole market, which leads to degenerate distributions of sales, profits,

employment, and so on. With differentiated goods, both Cournot and Bertrand competition could deliver

non-degenerate distributions. The difference lies in how skewed these distributions are towards the highest

productivity firms.

Motivated by this, we built an alternative version of the model with Bertrand competition in each

industry instead of Cournot. This changes the calculation of the static industry equilibria and the associated

profit flows, but given these, the dynamics remain the same. Superstar firms now choose prices to maximize

profit subject to demand from the final good producers for their product:70

max
pijt

pijtyijt − wtlijt = max
pijt

Yt p1−η
ijt

∑
Njt
k=1 p1−η

kjt + p1−η
cjt

− wt

qijt

p−η
ijt

∑
Njt
k=1 p1−η

kjt + p1−η
cjt

, (104)

which delivers the following best response functions:

pijt =
wt

(η − 1)qijt

η ∑k ̸=i p1−η
kjt + ηp1−η

cjt + p1−η
ijt

∑k ̸=i p1−η
kjt + p1−η

cjt

.

We assume Cournot competition in our baseline analysis due to its ability to generate more variation in

markups and more realistic market share distributions consistent with what is observed for large firms

in the United States, but most of our results hold regardless of the specific assumption on whether firms

compete in prices or quantities. To show this, we have re-estimated the model and performed a robustness

check on our results with differentiated Bertrand competition instead. The estimation and counterfactual

results are reported in Table L13 and Table L1, respectively.

Our quantitative results are very similar to what we have in the baseline analysis. The decline in

competition among superstars and from small firms (decline in η and ζ) once again implies an increase

in innovation, growth, and welfare. Ideas are getting harder to find for both small firms and superstars,

hurting growth and welfare. The rise in markups is almost completely explained by the decline in the

relative productivity of the competitive fringe ζ. While the exact quantitative magnitudes change, the

relative quantitative magnitudes stay similar to that in the baseline.

70Small firms in the fringe still set price equal to marginal cost.
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F Robustness Check: Intangible Investment

In the baseline estimation, we map firm-year-level innovation to firm-year-level average patent citations,

and aggregate spending on innovation to aggregate spending on R&D in the data. We examine the

robustness of our quantitative results by conducting an alternative estimation for the early and late

subsamples in which we target (1) a measure of aggregate intangible investment to GDP rather than R&D

to GDP alone, and (2) use a firm-year-level measure of total intangible investment to measure innovation,

as opposed to relying on patent data, when obtaining the data moments that let us replicate the inverted-U

relationship between innovation and relative sales.

To construct a firm-level measure of total intangible investment, we follow the methodology in Peters

and Taylor (2017) that uses data on the observed R&D expenses (xrd in Compustat) and Selling, General

and Administrative expenses (xsga in Compustat) of the firms in our sample.71 To obtain a target for

aggregate intangible investment to GDP, we start with the aggregate business R&D spending to GDP

ratio, and then multiply it with an adjustment ratio. This adjustment ratio is calculated by summing

up the total intangible investment by all firms in our Compustat sample, divided by the sum of all R&D

spending by all firms in our Compustat sample. To obtain the targets for the inverted-U relationship,

we repeat our regressions by using (standardized) log total intangible investment at the firm-year level

instead of (standardized) average patent citations for the early and late subsamples. The results of the new

estimation using these alternative targets and the associated counterfactual experiments are presented in

Tables L15 and L4 in the Revision Appendix, respectively. As can be seen, the results of the counterfactual

experiments are quite similar to the baseline analysis. Although the exact magnitudes change, it is still

the case that (1) the decline in the relative productivity of the competitive fringe explains almost all the

increase in the average markup, (2) decreasing competition among superstars and from small firms serves

to increase innovation, growth, and welfare, and (3) ideas are getting harder to find for both small firms

and superstars, and the decline in R&D efficiency once again explains why productivity growth did not

increase as much in response to declining competition. The signs of all CEWC effects are the same.

71Other papers that use this methodology include Hulten and Hao (2008), Eisfeldt and Papanikolaou (2014), and Xiaolan
(2014). Selling, General and Administrative expenses include, among other things, R&D, advertising, marketing and sales related
expenses.
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G Robustness Check: Increasing n̄ and N̄

In setting up the model, we had to make a choice on the upper bound for the maximum number of

productivity steps (n̄) and the maximum number of superstar firms within an industry (N̄) so that the

equilibria are computable. While in theory these numbers could be arbitrarily large, increasing any of

them rapidly increases the number of potential firm and industry states, which slows down the numerical

solution of the model. We have chosen the baseline values as a good compromise between allowing the

model to have rich enough heterogeneity within and across industries and the time needed for estimation

and computing counterfactual equilibria. This section proposes two robustness checks by increasing

respectively for higher n̄ and N̄.

Before we move onto the details of our robustness checks, we would like to discuss how N̄ and n̄ affect

the burden of computation. The dimensionalities of the two state variables are crucial: the firm state

variable for superstars, nijt = {nk
ijt}k ̸=i, and the industry state variable Θ = (N, n⃗). The dimensionality

of the firm state variable governs how many different static industry equilibria are to be solved, and

the dimensionalities of the superstar value function and the associated innovation policy function to

be evaluated in the value function iteration. The dimensionality of the industry state variable governs

the size of the instantaneous flow matrix pt(Θ, Θ′) which is needed to compute the stationary industry

state distribution µ(Θ) in BGP equilibria. In non-stationary equilibria, it directly increases the number

of continuous state variables for which the time paths must be calculated during the transition. In our

baseline estimation, N̄ = 4 and n̄ = 5 imply that the firm state variable has 774 dimensions, whereas the

industry state variable has 84 dimensions. In our robustness checks which will be discussed below, N̄ = 5
and n̄ = 5 implies 5,425 and 210, respectively, and N̄ = 4 and n̄ = 6 implies 1,246 and 120, respectively.

Tables L18 and L19 in the Revision Appendix report the dimensionalities of the firm and industry state

variables under different values of N̄ and n̄, respectively. The curse of dimensionality is apparent. For

instance, picking N̄ = 8 and n̄ = 8, which might sound reasonable at first, requires us to solve 29 million

systems of 8 nonlinear equations in each iteration given particular values for general-equilibrium variables

such as mt and Θt. The matrix pt(Θ, Θ′) has (289, 795)2 ≈ 84 × 109 entries, and we would need to keep

track of 290 thousand continuous state variables during the transition. As the tables demonstrate, the

problem becomes quite intractable for large values.

Increasing N̄: In this robustness check, we increase N̄ from 4 to 5. The results show that increasing N̄
to 5 changes virtually nothing. Despite increasing N̄ from 4 to 5, the parameter values we obtained using

the baseline version of the model still generates almost exactly the same model moments, so much so that

no re-estimation is needed, as the model fit is just as good. Table L3 in the Revision Appendix shows the

model moments in the late and early subsamples in the first and second to last columns, respectively, and

they are indistinguishable from the same in Table 2 in the main text. All the effects of the counterfactual

experiments found in the same table are also almost identical.

The underlying reason is that the fraction of industries with the maximum allowed number of superstars

Njt = 4 in the estimated equilibria is quite small. Figure L2 in the Revision Appendix shows the fractions

of industry states by the number of superstars under N̄ = 4 and N̄ = 5 for the early and late subsample

estimations, visually demonstrating this situation. Therefore, relaxing the maximum number of superstars

per industry does not lead to any meaningful changes, as the constraint was not binding much in the first
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place.

Increasing n̄: In this robustness check, we increase n̄ from 5 to 6. The upper bound n̄ is a grid size

for the quality ladder. Increasing n̄ and re-estimating the model is then expected to reduce the inferred

value of λ down. Since each step of the ladder represents less of a productivity increase, by extension, the

estimated parameter values for the superstar innovation cost function must also adjust to account for the

drop in the private value of the innovation to the firm so that the incentives remain the same. The overall

frequency of successful innovation mechanically increases, but the value of each innovation is now lower.

We increase n̄ from 5 to 6, re-estimate the model for the early and late subsamples, and repeat the

counterfactuals, the results of which are shown in Tables L14 and L2 in the Revision Appendix, respectively.

As expected, λ goes down in both re-estimations. Repeating the counterfactual experiments, we see that

the exact quantitative magnitudes vary, but the message remains the same. Movements in growth, the

average markup, and CEWC retain their directions and relative magnitudes, and so do almost all statistics

of interest.
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H Robustness Check: Quadratic R&D Cost Functions

While part of the existing literature uses quadratic R&D cost functions (see for instance Akcigit and

Kerr (2018)), we have decided to estimate the convexity of the R&D cost functions for both small and

superstar firms in our baseline analysis. As a robustness check, we re-estimate the model with quadratic

R&D cost functions. In particular, we re-estimate the model for both early and late subsamples and repeat

our counterfactual experiments. The details of the estimation and the experiments are reported in Tables

L17 and L9, respectively.

We should note that, when we exogenously impose both convexity parameters (ϵ and ϕ) to be equal

to 2, the model has a hard time matching the level of R&D intensity and the growth rate of the economy

simultaneously. This is not very surprising, since this leaves us with 6 parameters to hit 11 targets, an

acute case of over-identification.

Despite the fact that the fit of the model is significantly worse than under our baseline estimation, it is

worth noting that setting the R&D convexities to 2 does not significantly change the results obtained from

our counterfactual experiments in all but one case. The overall effect of setting the convexities equal to 2

is to increase the elasticity of the innovation decisions to changes in parameter values. As a consequence,

innovation, growth, and welfare effects are magnified. For instance, reverting η to its early period value

now delivers a consumption-equivalent welfare change of -18.32% as opposed to -12.76%. The effect

for reverting η and the small firm R&D cost function are very similar to the baseline figures. The only

difference is that the effect for superstar innovation now flips which can be attributed to the failure of the

estimation in matching the aggregate R&D to GDP ratio.

Overall, the robustness check shows that our results are robust to setting R&D cost to the commonly

used value of 2, but doing so reduces the model fit and further magnifies the dynamic gains from rising

markups.
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I Robustness Check: Non-Quadratic Entrepreneur Cost Function

In our baseline estimation, we assume a quadratic entrepreneur cost function due to the lack of

available data that we could use to separately identify the scale (ψ) and convexity parameters. Unlike

what is the case for incumbent firms, for which we can empirically observe their innovation inputs (R&D

expenditures) and outputs (patents, citations, sales growth, productivity growth, ...), we do not have access

to representative micro-data on business creation costs of entrepreneurs, which would ideally include not

only the material costs of founding a new business, but also the opportunity cost of the entrepreneur(s).

Using our model, the expected value of a small firm, combined with the normalization mt = 1, allows

us to infer only the value of one of the parameters. Therefore, we have decided to assume a quadratic cost,

as is often done in the endogenous growth literature (see, for instance, Akcigit and Kerr (2018), Akcigit

and Ates (2021), and Liu, Mian, and Sufi (2022)).

How would assuming a different value for the convexity parameter alter our results? First of all, the

value of this parameter does not affect estimation at all. Due to the normalization mt = 1, the estimation

algorithm never loops over it. Rather, we first estimate all the parameters except for ψ, and then recover

its implied value given the entrepreneurs’ optimality condition. What it affects is (1) the estimated value of

ψ, and (2) how much the mass of small firms mt changes in response to the changes in other parameter

values in the counterfactual experiments. Higher values of the convexity parameter imply smaller changes

in mt, and lower values imply larger changes. If we go all the way down to 1, we reach the linear business

creation cost/free entry case, where the response of mt is the most inflated.

We conduct two separate robustness checks. In the first one, we assume a higher convexity value of 3

instead of 2 for the entrepreneurs. In the second one, we assume a linear technology instead.

Table L6 in the Revision Appendix repeats our counterfactual experiments while assuming a convexity

of 3. As can be seen, the change in the stationary mass of small firms is always in the same direction,

but the movement is smaller in absolute terms. Consequently, the changes in innovation and growth

are all slightly muted, as the mass of small firms directly affects how much small firm innovation there

is. This reduces the dynamic welfare changes coming from changes in the growth rate of the economy,

but quantitatively, the differences are minor. For instance, the CEWC in the experiment for η goes from

−12.76% to −11.12%, and that for ζ goes from −7.60% to −5.50%.

We also implement a robustness check in which we assume a linear cost and free entry. Once again,

there is no need for re-estimation beyond recovering the new implied value of ψ. The moment fit is

identical to that in the baseline estimation.

Table L5 in the Revision Appendix displays the results of repeating our counterfactual experiments. As

discussed earlier, assuming a linear technology for the creation of new businesses magnifies the responses

of mt in all counterfactual experiments, and by extension, the magnitude of the changes in innovation and

growth, and the associated dynamic welfare effects. All signs are maintained, and all the CEWC numbers

are now inflated. Our results still hold, but all the implied changes are more dramatic.
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J Discussion of the Competitive Fringe Assumption

In our baseline model, each industry is populated by an endogenous number of superstar firms

(Njt ∈ {1, ..., N̄}), each producing a differentiated variety, as well as by a competitive fringe composed

of a mass mjt of small firms producing a homogeneous good. The productivity of superstar firms are

heterogeneous, and denoted by qijt, whereas the small firms in the competitive fringe all share the same

productivity qcjt = ζqleader
jt , where ζ > 0 is a parameter.

In this section, we aim to elucidate the reasoning behind our modeling choices, and at the same time,

demonstrate that the competitive fringe productivity qcjt = ζqleader
jt corresponds to the productivity of the

whole fringe, and therefore, that the parameter ζ can take any positive value, including values above

unity, with no perverse implications (that is, the competitive fringe can produce more output than even

the most productive superstar, even though the firms in the fringe themselves produce much smaller

amounts individually). To do so, we will solve a static equilibrium in which a large number of small firms

(Mjt ∈ Z+) will be treated exactly the same as the superstar firms, and provide a mapping between the

productivities in this alternative model and qcjt in our baseline.

J.1 Why do we need a competitive fringe?

Before laying out the details of this alternative model, it is useful to discuss why we need a competitive

fringe in the first place. Industries in the United States are populated by thousands of firms on average, but

in most industries, a handful of large firms (“superstars”) account for a large fraction of the total industry

sales. Data from the Business Dynamics Statistics database for the years 1980, 1990 and 2000 shows that,

on average, the median number of firms in NAICS 4-level industries was 4386 rising from 3724 in 1980 to

5022 in 2000. Table J1 provides additional summary statistics for the number of firms in each industry,

showing that these large numbers are not driven by some outlier industries. However, Autor, Dorn, Katz,

Patterson, and Reenen (2017) show that in many industries the top 4 firms account for a significant share

of both sales and employment. Focusing on four-digit SIC industries, they find that across six broadly

defined sectors, top 4 firms account for between 15 and 43 percent of total sales and between 12 and 34

percent of total employment, on average in 2012. The firm size distribution is right skewed, as can be seen

in Figure J1 which is borrowed from Axtell (2001). Using BDS data for the years 1980, 1990 and 2000, we

find that firms with more than 500 employees represent on average 5.8 percent of firms across four-digit

NAICS industries and between around 43 and 48 percent of employment.

When modeling an industry, theoretically speaking, we could treat all the firms in the industry the

same, and allow them to have their own differentiated varieties. This would imply having an endogenous

number of firms Njt, where it can range from just a few hundred firms to tens of thousands. To be able to

match the actual market share distribution observed in the real world, the firm productivity distribution

would contain a handful of very productive firms (superstars), and a huge number of firms with very low

productivities (the rest).

In practice, solving such a model computationally is impossible without further simplifications. Suppose

that we maintain our baseline grid size n̄ = 5 for the quality ladder. Even with this rather coarse grid, for

an industry with Njt = 10, 000 firms, we would have 510000 ≈ 5.01 × 106989 potential configurations, which

is substantially larger than the number of atoms in the universe (estimated to be between 1078 and 1082).
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FIGURE J1: US FIRM SIZE DISTRIBUTION BORROWED FROM AXTELL (2001) (FIGURE 1)
Notes: Data are for 1997 from the US Census Bureau, tabulated in bins having width increasing in powers of three. The solid line
is the OLS regression fit through the data.

TABLE J1: DISTRIBUTION OF THE NUMBER OF FIRMS PER NAICS 4 INDUSTRIES: BDS DATA

Year
Percentile 1980 1990 2000

10th 396 391 425
25th 1116 1309 1437
50th 3724 4413 5022
75th 12406 15731 16554
90th 30906 39510 44732

Notes: This table shows the distribution of the number of firms per industry. It reports the 10th, 25th, 75th, and 90th percentile of
the distribution as well as the median number of firms per NAICS 4 industry from BDS data for the years 1980, 1990 and 2000.

One could exploit the symmetry and just keep track of how many firms have a distinct quality instead, but

even that would result in a cardinality slightly lower than 100005 = 1020 for industries with 10,000 firms,

nevermind the fact that the model with an endogenous number of firms must calculate static equilibria for

all possible values of Njt ∈ {1, ..., N̄} rather than just Njt = 10, 000.

As demonstrated, even computing all possible static equilibria is troublesome when the number of firms

is large. Since our model is a step-by-step innovation model, the complexity is even greater, as we have to

compute the dynamic Markov-Perfect Equilibrium where innovation choices take as given the profits from

the static industry equilibria in the value function iteration, which themselves would suffer from the curse

of dimensionality.

Previous models in the endogenous growth literature have chosen to simplify the static industry

equilibria substantially. For instance, Klette and Kortum (2004), Akcigit and Kerr (2018), Akcigit and Ates

(2023), Aghion, Bergeaud, Boppart, Klenow, and Li (2023) or De Ridder (2023) assume that there is only a

single active firm in each industry thanks to perfect substitution and Bertrand competition. The step-by-step

innovation models such as Olmstead-Rumsey (2022) and Liu, Mian, and Sufi (2022) assume that all

industries are (at most) duopolies, that is Njt ≤ 2 in all industries. Our framework, in comparison, allows
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for an endogenous number of superstar firms Njt = {1, ..., N̄} with N̄ = 4 in the baseline, and N̄ = 5 as a

robustness check. However, it remains a fact that there are thousands of firms other than superstars in

each industry in the real world. These firms command very insignificant market shares individually, but

collectively, they constitute a significant chunk of the total industry sales. There are industries in which the

share of the top 4 firms (CR4) is less than 50%, which means the small firms collectively produce more

than all the superstars.

Our baseline model captures this feature of the data by introducing a competitive fringe composed

of a continuum of small firms in each industry. These firms individually produce infinitesimally small

amounts (the Lebesgue measure of any single firm is zero, and so is its market share compared to that of

any superstar), but their collective output and market share are determined according to the parameter

ζ > 0. In the next subsection, we offer a discretized version of the same idea to elucidate its workings,

and show how ζ maps to productivities of small firms when they are countable and treated the same as

superstars.

J.2 Discretized competitive fringe

Consider an alternative version of the industry-level model with a discretized competitive fringe.

Industry j is populated by Njt superstar firms (Njt ∈ {1, ..., N̄}) and Mjt ∈ Z+ small firms. Unlike in the

baseline model, all firms are treated the same. That is, each firm has its own individual variety that is

aggregated using a CES technology, and they all strategically compete in quantities. The industry output is

therefore given by:

yjt =

Njt

∑
i=1

y
η−1

η

ijt +
Njt+Mjt

∑
i=Njt+1

y
η−1

η

ijt


η

η−1

=

(Njt+Mjt

∑
i=1

y
η−1

η

ijt

) η
η−1

(105)

The productivity of superstar firms i ∈ {1, ..., Njt} are heterogeneous, and denoted by qijt as in

the baseline model, whereas the small firms i ∈ {Njt + 1, Njt + Mjt} all share the same productivity

qijt = qcjt = αqleader
jt , ∀i > Njt, where α > 0 is a parameter. We will later on show how the parameter

α maps to the parameter ζ in the baseline model. All firms produce their own variety using a linear

production technology in labor:

yijt = qijtlijt (106)

where qijt is the productivity of firm i in industry j at time t and lijt is labor. Using the same final good

production technology as in the baseline model, the inverse demand function for firm i becomes:

pijt =
y
− 1

η

ijt Yt

∑
Njt+Mjt
k=1 y

η−1
η

kjt

(107)

implying
yijt

ykjt
=

(
pkjt

pijt

)η

(108)
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We assume now that all firms within the same industry, and not just the superstars, compete à la
Cournot. Each firm maximizes profit:

max
yijt

pijtyijt − wtlijt = max
yijt

y
η−1

η

ijt Yt

∑
Njt+Mjt
k=1 y

η−1
η

kjt

−
wtyijt

qijt
. (109)

This delivers the following best response function for all firms:

yijt =

η − 1
η

qijt
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η−1
η

kjt[
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]2
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(110)

Relative production between the varieties of firm i and k in industry j can then be written as:

(
yijt

ykjt

) 1
η

=
qijt

qkjt

∑l ̸=i

(
yl jt
yijt

) η−1
η

∑l ̸=k

(
yl jt
yijt

) η−1
η

(111)

Since all small firms share the same productivity qcjt = αqleader
jt , ∀i > Njt, equation (111) implies their

output, denoted ycjt from now on, must also be the same; that is, yijt = ycjt, ∀i > Njt. Consequently, solving

for the static equilibrium of the industry, {yijt}
Njt+Mjt
i=1 , only requires solving for Njt ratios, not Njt + Mjt. In

fact, we can rewrite equation (111) as

(
yijt

ykjt

) 1
η

=
qijt

qkjt

∑l ̸=i,l≤Njt

(
yl jt
yijt

) η−1
η
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(
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η
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(
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) η−1
η
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(
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) η−1
η

, ∀i, k ≤ Njt (112)

and

(
yijt

ycjt

) 1
η

=
qijt

qcjt

∑l ̸=i,l≤Njt

(
yl jt
yijt

) η−1
η
+ Mjt

(
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) η−1
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(
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) η−1
η
+ (Mjt − 1)

(
ycjt
yijt

) η−1
η

, ∀i ≤ Njt (113)

We can further derive variety prices (pijt) and profits before R&D expenditures (πijt) which only depend
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on relative productivities within the industry:

pijt =
η

η − 1

∑
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(
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(
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J.3 Quantitative demonstration and mapping to the baseline model

Given the derivations, we are ready to calculate equilibria using the discretized competitive fringe. For

the quantitative demonstration, we are going to rely on estimated parameter values from our baseline

model, and focus on a particular industry state. For instance, consider an industry with Njt = 4 firms,

where firm 1 is the industry leader, firm 2 is one step behind the leader, firm 3 is two steps behind the

leader, and firm 4 is three steps behind the leader (i.e., the state of the leading firm is (1, 2, 3)).

Our goal is to find the value of α > 0 such that the total market share of the small firms (fringe),

is the same as the industry equilibrium in the baseline model with the estimated value of ζ = 0.5912
(whole sample). Naturally, the value of α that satisfies this requirement is a function of the number of

small firms Mjt. Therefore, we shall repeat the same exercise for various values of Mjt, motivated by the

empirically-observed firm counts per industry we previously provided in Table J1.

Table J2 displays the values of α that replicate the same competitive fringe market share distribution

as in the industry equilibrium in the baseline model. As can be seen in the table, as Mjt increases, α,

the relative productivity of a single small firm decreases, so that the total market share of all small firms

(the competitive fringe) is the same as it is in the baseline model. We should note that, in this exercise,

we have only targeted the market share of the competitive fringe. We can nevertheless notice that it

directly follows that the entire market share distribution in the industry is preserved (compared to the

baseline as well as across different numbers of small firms). This further shows that our simplifying

assumption of a continuum of small firms does not affect our results regarding market share distribution

across different firms. The small firms that are tiny compared to the superstars do not have meaningful

strategic interactions with the superstars or the other small firms. However, thanks to their large number,

the small firms as a whole still have a meaningful impact on the production choices of the superstars, as

well as their markups and profits.

Overall, this exercise demonstrates that ζ ̸= α. The parameter ζ in the baseline model captures the

productivity of the competitive fringe as a whole, and not of individual small firms α. The value of α is

negatively related to the number of small firms Mjt. When ζ > 1, this does not mean the small firms are

more productive than the superstars. It means that the competitive fringe as a collection of all small firms

is more productive than individual superstars. But individually, a single small firm is much less productive

than any superstar, i.e., αqleader
jt << (1 + λ)−n̄qleader

jt ≤ qijt, ∀i ≤ Njt for realistic values of Mjt.72 We have

repeated the same exercise as in Table J2 for every industry state in the model. In all cases, our baseline

72in our baseline calibration, (1 + λ)−n̄ = 0.257.
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TABLE J2: α AS A FUNCTION OF THE NUMBER OF SMALL FIRMS IN THE FRINGE FOR A GIVEN FRINGE MARKET

SHARE

Number of Market share Market share Market share Market share Market share Market share
small firms α fringe superstar 1 superstar 2 superstar 3 superstar 4 one small firm

391 0.243 0.378 0.323 0.191 0.083 0.025 8.273×10−4

1309 0.197 0.378 0.323 0.191 0.083 0.025 2.471×10−4

4413 0.159 0.378 0.323 0.191 0.083 0.025 7.330×10−5

15731 0.127 0.378 0.323 0.191 0.083 0.025 2.056×10−5

39510 0.108 0.378 0.323 0.191 0.083 0.025 8.187×10−6

Baseline 0.378 0.323 0.191 0.083 0.025 0

Notes: This table shows the value of α required to maintain the same market share for the whole competitive fringe as in our
baseline economy (whole sample) as a function of the number of firms in the fringe. The reported results relate to an industry
with 4 superstar firms, in which the largest superstar firm leads its competitors by respectively one, two and three productivity
steps. It also reports the market shares of all superstar firms, of the competitive fringe as a whole and of each small firm in the
fringe. The last row shows the market share distribution in our baseline estimation.

calibration implies that small firms are less productive than the least productive superstar in the industry

for realistic values of Mjt. In particular, this is true for every industry as long as the number of firms is

larger than 291.
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K Additional Quantitative Analysis

K.1 Distributional Changes between Early and Late Periods

Figure K1 shows that there are considerable changes in the industrial structure between the two periods.

Panel (a) of Figure K1 shows the distribution of industries over states with a different number of superstar

firms. There is an increase in the share of industries with one or two superstar firms, whereas the share of

industries with more than two superstar firms decreases. There is an increase in market concentration. This

is also seen in Panels (b) and (g) of Figure K1: the distribution of average markup within industries and of

and HHI shifts strongly to the right. Panel (c) of Figure K1 depicts superstar innovation at the industry

level, and the distribution moves to the left towards less innovation. The distribution of the superstar

entry rate – or, equivalently, small firm innovation – across industries is seen in Panel (d) of Figure K1. A

large overall decrease is observed, and the heterogeneity of superstar entry rates across industries also

goes down. Despite the decrease in innovation by both small and large firms, the distribution of R&D

costs remains largely the same with slight increases, as seen in Panels (e) and (f) of Figure K1. This owes

to the overall increase in the costs to innovate. Panel (h) of Figure K1 shows that the distribution of

within-industry standard deviation of markups shifts to the left between the early and the late period.

K.2 Decomposing the Source of the Decrease in the Labor Share

Using our model, we can write the change in the labor share (LS) between the early (subscript e) and

late (subscript l) sub-samples as follows:

∆LS = ∑
Θ

µl(Θ)

[
N(Θ)

∑
k=1

lk,l(Θ) + ml lc,l(Θ)

]
ωl − ∑

Θ
µe(Θ)

[
N(Θ)

∑
k=1

lk,e(Θ) + melc,e(Θ)

]
ωe

= ∑
Θ

µl(Θ)

[
N(Θ)

∑
k=1

LSk,l(Θ)Υk,l(Θ) + LSc,l(Θ)Υc,l(Θ)

]

− ∑
Θ

µe(Θ)

[
N(Θ)

∑
k=1

LSk,e(Θ)Υk,e(Θ) + LSc,e(Θ)Υc,e(Θ)

]
(116)

where Υk,t(Θ) is the market share of firm k in industry Θ at time t and Υc,t(Θ) is the market share of the

fringe. We can further decompose the change in the labor share as:

∆LS =

(
∑
Θ

µl(Θ)− ∑
Θ

µe(Θ)

)[
N(Θ)

∑
k=1

LSk,l(Θ)Υk,l(Θ) + LSc,l(Θ)Υc,l(Θ)

]

+ ∑
Θ

µe(Θ)

{[
N(Θ)

∑
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]
−
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]}
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{[
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∑
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−
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]}

where the first term captures the change in the aggregate labor share due to the change in the distribution

of industry states µ(Θ), the second term captures the change in the aggregate labor share due to within-
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industry reallocation of sales, and the third term captures the change in the aggregate labor share due to

changes in firm-level labor shares.

Our model predicts that almost all of the 5.18% decrease in the aggregate labor share between both

sub-samples is due to changes in market share reallocation (1.79%) and changes in firm-level labor shares

(3.95%). Even though Autor, Dorn, Katz, Patterson, and Van Reenen (2020) use a different decomposition,

our results are comparable, in that they also find within-industry market share reallocation to be responsible

for a large part of the decrease in the aggregate labor share.
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FIGURE K1: CHANGES IN DISTRIBUTION: EARLY VS. LATE
Notes: This figure compares the stationary distribution of the key variables of interest in the early vs. late subsamples. The stationary distributions
for both subsamples were computed using the computational algorithms detailed in Section A.8 with parameter estimates reported in Table
1. The blue line depicts the distribution in early subsample, while the red dotted line depicts that in late subsample. Panel (a) shows the
distribution of industries over states with a different number of superstar firms. Panel (b) illustrates the distribution of average markup within
industries. Panel (c) depicts the distribution of superstar innovation at the industry level. Panel (d) presents the distribution of the superstar
entry rate, or equivalently, small firm innovation, across industries. Panels (e) and (f) illustrate the distribution of R&D spending for superstars
and small firms, respectively. Panel (g) and (h) show the distribution of the Herfindahl-Hirschman Index (HHI) and the standard deviation of
within-industry markups.
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L Additional Tables and Figures

TABLE L1: DISENTANGLING THE STRUCTURAL TRANSITION — BERTRAND COMPETITION

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.30% 1.85% -19.65% 2.05% -11.15% 2.70% 17.12%
R&D intensity 2.59% 1.94% -25.29% 1.91% -26.17% 3.37% 30.11%
average markup 1.404 1.408 0.23% 1.318 -6.15% 1.397 -0.55%
std. dev. markup 0.303 0.295 -2.86% 0.275 -9.51% 0.285 -5.94%
labor share 0.599 0.596 -0.47% 0.634 5.84% 0.599 -0.01%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 1.053 1.250 18.65% 0.993 -5.69% 1.024 -2.75%
top point (intra-industry) 0.489 0.494 1.03% 0.480 -1.92% 0.493 0.90%
avg. profitability 0.224 0.233 4.29% 0.186 -16.74% 0.216 -3.33%
avg. leader relative quality 0.678 0.762 12.29% 0.694 2.26% 0.562 -17.06%
std. dev. leader rel. quality 0.173 0.180 4.05% 0.176 2.02% 0.138 -19.79%

superstar innovation 0.174 0.129 -25.98% 0.153 -12.36% 0.237 36.12%
small firm innovation 0.039 0.025 -36.87% 0.029 -27.10% 0.079 102.45%
output share of superstars 0.665 0.680 2.13% 0.587 -11.72% 0.691 3.81%
avg. superstars per industry 2.321 1.918 -17.33% 2.189 -5.65% 3.150 35.73%
mass of small firms 1.000 0.696 -30.44% 0.783 -21.70% 1.356 35.58%
initial output 0.966 0.934 -3.35% 0.990 2.47% 0.990 2.48%
CE Welfare change -13.10% -3.22% 12.15%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.30% 2.37% 2.82% 2.30% -0.26% 2.25% -2.20%
R&D intensity 2.59% 2.55% -1.71% 2.58% -0.37% 2.31% -10.76%
average markup 1.404 1.402 -0.14% 1.404 0.01% 1.304 -7.12%
std. dev. markup 0.303 0.299 -1.58% 0.304 0.07% 0.238 -21.63%
labor share 0.599 0.599 -0.01% 0.599 0.00% 0.611 1.98%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 1.053 0.920 -12.66% 1.054 0.10% 0.894 -15.13%
top point (intra-industry) 0.489 0.485 -0.88% 0.489 -0.02% 0.492 0.69%
avg. profitability 0.224 0.225 0.30% 0.224 0.04% 0.182 -18.50%
avg. leader relative quality 0.678 0.656 -3.33% 0.679 0.19% 0.572 -15.72%
std. dev. leader rel. quality 0.173 0.172 -0.58% 0.173 0.16% 0.151 -12.34%

superstar innovation 0.174 0.186 6.76% 0.174 -0.39% 0.209 19.93%
small firm innovation 0.039 0.042 6.74% 0.039 -0.82% 0.060 53.73%
output share of superstars 0.665 0.672 1.06% 0.665 -0.04% 0.644 -3.22%
avg. superstars per industry 2.321 2.440 5.16% 2.313 -0.32% 2.933 26.41%
mass of small firms 1.000 1.063 6.31% 0.988 -1.21% 1.000 0.00%
initial output 0.966 0.973 0.71% 0.966 -0.03% 0.989 2.37%
CE Welfare change 2.40% -0.17% 1.37%

Notes: We estimate the model with Bertrand competition in Section E and carry out the same experiments as in the baseline.
The table reports the changes in model moments when setting parameters of interest back to their estimated levels in the early
sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE L2: DISENTANGLING THE STRUCTURAL TRANSITION — n̄ = 6

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 1.77% -23.09% 1.95% -15.37% 2.62% 13.75%
R&D intensity 2.69% 2.20% -18.32% 1.89% -30.00% 3.38% 25.57%
average markup 1.442 1.433 -0.59% 1.341 -6.99% 1.446 0.29%
std. dev. markup 0.446 0.415 -6.86% 0.392 -12.18% 0.432 -3.15%
labor share 0.610 0.608 -0.30% 0.645 5.75% 0.605 -0.79%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.914 0.816 -10.79% 0.911 -0.41% 0.990 8.31%
top point (intra-industry) 0.448 0.436 -2.71% 0.444 -0.81% 0.461 2.88%
avg. profitability 0.209 0.216 3.29% 0.173 -17.29% 0.208 -0.30%
avg. leader relative quality 0.652 0.746 14.42% 0.691 5.93% 0.559 -14.25%
std. dev. leader relative quality 0.160 0.189 18.24% 0.175 9.55% 0.128 -20.14%

superstar innovation 0.222 0.160 -27.80% 0.182 -17.76% 0.286 28.90%
small firm innovation 0.023 0.008 -63.24% 0.015 -35.77% 0.058 153.26%
output share of superstars 0.522 0.542 3.86% 0.449 -14.03% 0.550 5.40%
avg. superstars per industry 2.126 1.726 -18.81% 1.950 -8.29% 2.750 29.32%
mass of small firms 1.000 0.528 -47.18% 0.721 -27.87% 1.359 35.88%
initial output 0.818 0.733 -10.36% 0.839 2.56% 0.835 2.09%
CE Welfare change -21.12% -5.35% 9.71%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.57% 11.25% 2.47% 7.23% 2.17% -6.04%
R&D intensity 2.69% 2.82% 4.59% 2.99% 11.12% 2.39% -11.45%
average markup 1.442 1.441 -0.07% 1.444 0.17% 1.316 -8.69%
std. dev. markup 0.446 0.446 3.02E-05 0.440 -1.39% 0.326 -26.88%
labor share 0.610 0.611 0.07% 0.608 -0.40% 0.621 1.76%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.914 0.922 0.80% 0.915 0.01% 0.771 -15.64%
top point (intra-industry) 0.448 0.448 0.05% 0.453 1.21% 0.453 1.25%
avg. profitability 0.209 0.207 -0.77% 0.209 0.06% 0.169 -19.28%
avg. leader relative quality 0.652 0.649 -0.43% 0.613 -6.04% 0.605 -7.25%
std. dev. leader relative quality 0.160 0.161 0.71% 0.143 -10.76% 0.137 -14.13%

superstar innovation 0.222 0.250 12.55% 0.248 11.69% 0.240 8.34%
small firm innovation 0.023 0.027 19.12% 0.032 42.16% 0.025 8.58%
output share of superstars 0.522 0.521 -0.09% 0.535 2.44% 0.509 -2.46%
avg. superstars per industry 2.126 2.160 1.59% 2.339 10.01% 2.230 4.88%
mass of small firms 1.000 1.129 12.90% 1.672 67.17% 1.000 0.00%
initial output 0.818 0.817 -0.08% 0.826 0.96% 0.770 -5.82%
CE Welfare change 6.47% 4.92% -8.74%

Notes: We estimate the baseline model with the maximum number of productivity steps between any two superstar firms n̄ set to 6
and carry out the same experiments as in the baseline. The table reports the changes in model moments when setting parameters
of interest back to their estimated levels in the early sub-sample while keeping other parameters fixed at their estimated values in
the late sub-sample.
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TABLE L3: DISENTANGLING THE STRUCTURAL TRANSITION — N̄ = 5

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.07% -10.44% 1.83% -21.04% 2.76% 19.24%
R&D intensity 2.50% 2.37% -5.19% 1.55% -37.76% 3.40% 36.12%
average markup 1.444 1.448 0.24% 1.320 -8.56% 1.450 0.39%
std. dev. markup 0.452 0.425 -6.00% 0.381 -15.73% 0.437 -3.50%
labor share 0.610 0.604 -1.05% 0.653 6.98% 0.605 -0.96%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.786 0.706 -10.07% 0.796 1.37% 0.866 10.22%
top point (intra-industry) 0.447 0.434 -2.89% 0.443 -0.98% 0.469 4.77%
avg. profitability 0.210 0.219 4.35% 0.166 -21.03% 0.209 -0.68%
avg. leader relative quality 0.678 0.720 6.23% 0.728 7.47% 0.560 -17.35%
std. dev. leader rel. quality 0.166 0.177 6.61% 0.181 9.23% 0.136 -18.03%

superstar innovation 0.169 0.145 -13.99% 0.129 -23.59% 0.237 40.55%
small firm innovation 0.019 0.011 -41.98% 0.011 -42.26% 0.062 221.81%
output share of superstars 0.516 0.549 6.24% 0.429 -16.90% 0.550 6.48%
avg. superstars per industry 2.093 1.874 -10.50% 1.868 -10.74% 2.954 41.12%
mass of small firms 1.000 0.717 -28.26% 0.666 -33.39% 1.434 43.36%
initial output 0.793 0.733 -7.50% 0.819 3.31% 0.812 2.39%
CE Welfare change -12.79% -7.63% 13.35%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.39% 3.17% 2.46% 6.28% 2.19% -5.23%
R&D intensity 2.50% 2.47% -0.90% 2.72% 8.97% 2.08% -16.63%
average markup 1.444 1.444 0.02% 1.446 0.14% 1.301 -9.87%
std. dev. markup 0.452 0.451 -0.32% 0.448 -0.90% 0.325 -28.07%
labor share 0.610 0.610 -0.07% 0.609 -0.28% 0.628 2.86%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.786 0.750 -4.47% 0.778 -0.95% 0.688 -12.42%
top point (intra-industry) 0.447 0.446 -0.29% 0.452 0.99% 0.463 3.46%
avg. profitability 0.210 0.211 0.39% 0.210 0.00% 0.162 -22.75%
avg. leader relative quality 0.678 0.668 -1.51% 0.649 -4.27% 0.605 -10.70%
std. dev. leader rel. quality 0.166 0.165 -0.62% 0.155 -6.28% 0.142 -14.13%

superstar innovation 0.169 0.177 4.95% 0.184 9.21% 0.181 7.48%
small firm innovation 0.019 0.022 12.23% 0.025 28.45% 0.030 53.68%
output share of superstars 0.516 0.519 0.56% 0.525 1.72% 0.483 -6.40%
avg. superstars per industry 2.093 2.154 2.92% 2.245 7.25% 2.441 16.61%
mass of small firms 1.000 1.075 7.47% 1.427 42.69% 1.000 0.00%
initial output 0.793 0.794 0.19% 0.798 0.64% 0.769 -3.02%
CE Welfare change 2.06% 4.12% -5.50%

Notes: Using the model with the maximum number of superstar firms in an industry N̄ set to 5, we carry out the same experiments
as in the baseline. The table reports the changes in model moments when setting parameters of interest back to their estimated
levels in the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE L4: DISENTANGLING THE STRUCTURAL TRANSITION — TOTAL INTANGIBLE INVESTMENT

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.34% 2.23% -4.62% 1.90% -18.54% 2.54% 8.60%
intangible inv. intensity 3.01% 3.07% 2.23% 1.93% -35.81% 3.46% 15.15%
average markup 1.493 1.523 1.97% 1.359 -9.01% 1.496 0.17%
std. dev. markup 0.464 0.446 -3.91% 0.397 -14.54% 0.455 -2.03%
labor share 0.592 0.577 -2.50% 0.638 7.71% 0.589 -0.53%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(intangible inv., relative sales) 7.556 5.163 -31.68% 6.801 -10.00% 8.305 9.91%
top point (intra-industry) 0.442 0.415 -6.14% 0.437 -1.05% 0.446 0.81%
avg. profitability 0.228 0.246 7.72% 0.182 -20.49% 0.228 -0.22%
avg. leader relative quality 0.643 0.672 4.53% 0.693 7.71% 0.590 -8.27%
std. dev. leader rel. quality 0.159 0.164 3.30% 0.177 11.08% 0.140 -11.95%

superstar innovation 0.191 0.174 -8.92% 0.149 -21.79% 0.221 16.01%
small firm innovation 0.024 0.014 -41.42% 0.014 -40.86% 0.038 60.16%
output share of superstars 0.563 0.610 8.30% 0.470 -16.61% 0.581 3.17%
avg. superstars per industry 2.198 1.994 -9.30% 1.965 -10.61% 2.524 14.81%
mass of small firms 1.000 0.743 -25.67% 0.674 -32.57% 1.149 14.92%
initial output 0.789 0.739 -6.32% 0.807 2.37% 0.799 1.28%
CE Welfare change -8.86% -7.11% 5.99%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.34% 2.74% 17.11% 2.42% 3.52% 2.25% -3.90%
intangible inv. intensity 3.01% 3.21% 6.62% 3.17% 5.51% 2.53% -15.74%
average markup 1.493 1.492 -0.09% 1.494 0.08% 1.357 -9.16%
std. dev. markup 0.464 0.463 -0.35% 0.461 -0.75% 0.351 -24.43%
labor share 0.592 0.592 0.02% 0.591 -0.21% 0.607 2.49%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(intangible inv., relative sales) 7.556 7.982 5.64% 7.817 3.45% 5.862 -22.43%
top point (intra-industry) 0.442 0.446 0.95% 0.443 0.33% 0.430 -2.67%
avg. profitability 0.228 0.227 -0.80% 0.228 -0.02% 0.186 -18.75%
avg. leader relative quality 0.643 0.630 -2.03% 0.624 -3.01% 0.603 -6.21%
std. dev. leader rel. quality 0.159 0.160 0.87% 0.151 -4.81% 0.149 -6.54%

superstar innovation 0.191 0.231 20.99% 0.202 5.67% 0.214 12.07%
small firm innovation 0.024 0.032 35.85% 0.028 17.45% 0.026 9.73%
output share of superstars 0.563 0.566 0.47% 0.570 1.19% 0.536 -4.89%
avg. superstars per industry 2.198 2.303 4.77% 2.303 4.80% 2.289 4.14%
mass of small firms 1.000 1.230 22.96% 1.273 27.34% 1.000 0.00%
initial output 0.789 0.790 0.11% 0.792 0.48% 0.765 -3.05%
CE Welfare change 10.40% 2.39% -4.76%

Notes: We examine the robustness of our quantitative results by conducting an alternative estimation for the early and late
subsamples in which we target (1) a measure of aggregate intangible investment to GDP rather than R&D to GDP alone, and (2)
use a firm-year-level measure of total intangible investment to measure innovation, as opposed to relying on patent data, when
obtaining the data moments that let us replicate the inverted-U relationship between innovation and relative sales. Using the
re-estimated model, we carry out the same experiments as in the baseline. The table reports the changes in model moments when
setting parameters of interest back to their estimated levels in the early sub-sample while keeping other parameters fixed at their
estimated values in the late sub-sample.
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TABLE L5: DISENTANGLING THE STRUCTURAL TRANSITION — LINEAR SMALL FIRM ENTRY COST

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 1.71% -26.26% 1.32% -42.73% 2.81% 21.36%
R&D intensity 2.50% 1.92% -23.13% 1.10% -55.93% 3.53% 41.62%
average markup 1.444 1.440 -0.31% 1.314 -9.01% 1.451 0.45%
std. dev. markup 0.452 0.430 -4.85% 0.387 -14.52% 0.434 -4.11%
labor share 0.610 0.609 -0.31% 0.657 7.69% 0.604 -1.13%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.783 0.717 -8.50% 0.818 4.47% 0.875 11.64%
top point (intra-industry) 0.448 0.432 -3.60% 0.440 -1.63% 0.468 4.51%
avg. profitability 0.210 0.218 3.77% 0.165 -21.49% 0.209 -0.72%
avg. leader relative quality 0.678 0.773 14.09% 0.808 19.18% 0.541 -20.26%
std. dev. leader rel. quality 0.165 0.189 14.21% 0.190 15.03% 0.119 -28.19%

superstar innovation 0.169 0.118 -30.20% 0.091 -45.89% 0.247 46.30%
small firm innovation 0.019 0.008 -58.85% 0.006 -67.05% 0.065 242.79%
output share of superstars 0.516 0.529 2.55% 0.408 -20.92% 0.555 7.57%
avg. superstars per industry 2.090 1.688 -19.22% 1.588 -24.00% 3.068 46.81%
mass of small firms 1.000 0.406 -59.37% 0.295 -70.47% 2.183 118.26%
initial output 0.793 0.726 -8.43% 0.808 1.93% 0.815 2.80%
CE Welfare change -20.84% -19.22% 15.01%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.43% 5.25% 2.63% 13.65% 2.19% -5.40%
R&D intensity 2.50% 2.54% 1.92% 3.04% 21.86% 2.07% -17.01%
average markup 1.444 1.445 0.06% 1.449 0.31% 1.301 -9.88%
std. dev. markup 0.452 0.450 -0.61% 0.442 -2.19% 0.325 -28.06%
labor share 0.610 0.609 -0.16% 0.606 -0.67% 0.628 2.87%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.783 0.744 -4.99% 0.785 0.15% 0.683 -12.82%
top point (intra-industry) 0.448 0.448 0.04% 0.459 2.57% 0.462 3.17%
avg. profitability 0.210 0.211 0.41% 0.210 -0.09% 0.162 -22.74%
avg. leader relative quality 0.678 0.658 -2.90% 0.607 -10.41% 0.607 -10.44%
std. dev. leader rel. quality 0.165 0.161 -2.77% 0.138 -16.29% 0.140 -15.27%

superstar innovation 0.169 0.182 7.99% 0.207 22.69% 0.180 6.75%
small firm innovation 0.019 0.023 20.67% 0.035 82.27% 0.028 46.31%
output share of superstars 0.516 0.522 1.12% 0.538 4.14% 0.483 -6.46%
avg. superstars per industry 2.090 2.198 5.20% 2.495 19.40% 2.412 15.41%
mass of small firms 1.000 1.206 20.58% 2.530 152.96% 1.000 0.00%
initial output 0.793 0.796 0.40% 0.805 1.54% 0.769 -3.03%
CE Welfare change 3.43% 9.24% -5.58%

Notes: Using the alternative model with linear small firm entry cost, we carry out the same experiments as in the baseline. The
table reports the changes in model moments when setting parameters of interest back to their estimated levels in the early
sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE L6: DISENTANGLING THE STRUCTURAL TRANSITION — ENTREPRENEUR COST CONVEXITY = 3

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.14% -7.35% 1.91% -17.37% 2.71% 17.25%
R&D intensity 2.50% 2.46% -1.42% 1.64% -34.38% 3.26% 30.48%
average markup 1.444 1.449 0.35% 1.322 -8.48% 1.449 0.36%
std. dev. markup 0.452 0.424 -6.25% 0.380 -15.96% 0.439 -3.00%
labor share 0.610 0.603 -1.20% 0.652 6.86% 0.605 -0.86%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.783 0.701 -10.50% 0.788 0.60% 0.830 5.91%
top point (intra-industry) 0.448 0.436 -2.66% 0.444 -0.76% 0.466 3.97%
avg. profitability 0.210 0.220 4.46% 0.166 -20.97% 0.209 -0.43%
avg. leader relative quality 0.678 0.709 4.57% 0.714 5.30% 0.578 -14.78%
std. dev. leader rel. quality 0.165 0.173 4.46% 0.177 6.94% 0.134 -19.12%

superstar innovation 0.169 0.151 -10.55% 0.136 -19.41% 0.225 33.25%
small firm innovation 0.019 0.012 -36.57% 0.012 -34.91% 0.049 157.90%
output share of superstars 0.516 0.552 7.00% 0.433 -16.17% 0.545 5.59%
avg. superstars per industry 2.090 1.915 -8.38% 1.925 -7.87% 2.751 31.65%
mass of small firms 1.000 0.815 -18.52% 0.781 -21.86% 1.228 22.80%
initial output 0.793 0.735 -7.30% 0.821 3.57% 0.809 2.07%
CE Welfare change -11.12% -5.50% 11.88%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.37% 2.62% 2.41% 4.12% 2.19% -5.40%
R&D intensity 2.50% 2.45% -1.66% 2.64% 5.69% 2.07% -17.01%
average markup 1.444 1.444 0.01% 1.445 0.09% 1.301 -9.88%
std. dev. markup 0.452 0.451 -0.24% 0.450 -0.57% 0.325 -28.06%
labor share 0.610 0.610 -0.05% 0.609 -0.18% 0.628 2.87%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.783 0.749 -4.43% 0.777 -0.80% 0.683 -12.82%
top point (intra-industry) 0.448 0.446 -0.36% 0.450 0.59% 0.462 3.17%
avg. profitability 0.210 0.211 0.39% 0.210 0.01% 0.162 -22.74%
avg. leader relative quality 0.678 0.670 -1.14% 0.660 -2.71% 0.607 -10.44%
std. dev. leader rel. quality 0.165 0.165 -0.21% 0.158 -4.19% 0.140 -15.27%

superstar innovation 0.169 0.176 4.11% 0.178 5.79% 0.180 6.75%
small firm innovation 0.019 0.021 9.60% 0.022 16.22% 0.028 46.31%
output share of superstars 0.516 0.518 0.42% 0.522 1.10% 0.483 -6.46%
avg. superstars per industry 2.090 2.137 2.27% 2.181 4.38% 2.412 15.41%
mass of small firms 1.000 1.045 4.49% 1.253 25.26% 1.000 0.00%
initial output 0.793 0.794 0.14% 0.796 0.41% 0.769 -3.03%
CE Welfare change 1.71% 2.68% -5.60%

Notes: Using the alternative model with entrepreneur cost convexity set to 3, we carry out the same experiments as in the baseline.
The table reports the changes in model moments when setting parameters of interest back to their estimated levels in the early
sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE L7: DISENTANGLING THE STRUCTURAL TRANSITION — DECREASING RETURNS TO SCALE

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.31% 2.02% -12.67% 1.88% -18.76% 2.66% 15.14%
R&D intensity 2.78% 2.39% -14.19% 1.72% -38.10% 3.48% 25.24%
average markup 1.469 1.455 -0.96% 1.310 -10.83% 1.468 -0.02%
std. dev. markup 0.467 0.458 -2.02% 0.370 -20.83% 0.452 -3.26%
labor share 0.542 0.546 0.71% 0.590 8.85% 0.539 -0.54%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 0.782 0.804 2.79% 0.742 -5.16% 0.799 2.17%
top point (intra-industry) 0.436 0.442 1.54% 0.429 -1.43% 0.442 1.51%
avg. profitability 0.294 0.292 -0.47% 0.243 -17.12% 0.290 -1.05%
avg. leader relative quality 0.703 0.749 6.52% 0.731 4.04% 0.632 -10.16%
std. dev. leader rel. quality 0.171 0.181 6.25% 0.181 6.18% 0.157 -7.72%

superstar innovation 0.166 0.141 -15.08% 0.133 -19.74% 0.211 26.71%
small firm innovation 0.014 0.011 -24.66% 0.009 -34.45% 0.032 119.26%
output share of superstars 0.534 0.526 -1.46% 0.430 -19.39% 0.558 4.65%
avg. superstars per industry 1.944 1.776 -8.61% 1.823 -6.21% 2.358 21.31%
mass of small firms 1.000 1.005 0.51% 1.100 9.96% 0.983 -1.68%
initial output 0.901 0.858 -4.81% 0.963 6.85% 0.919 1.97%
CE Welfare change -11.18% -3.41% 10.52%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.31% 2.38% 3.14% 2.28% -1.08% 2.19% -5.01%
R&D intensity 2.78% 2.72% -2.18% 2.77% -0.55% 2.11% -24.08%
average markup 1.469 1.468 -0.03% 1.475 0.44% 1.296 -11.75%
std. dev. markup 0.467 0.467 -0.13% 0.472 1.08% 0.339 -27.38%
labor share 0.542 0.542 0.01% 0.541 -0.28% 0.570 4.99%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 0.782 0.760 -2.85% 0.788 0.69% 0.729 -6.84%
top point (intra-industry) 0.436 0.433 -0.48% 0.436 0.06% 0.438 0.60%
avg. profitability 0.294 0.294 0.24% 0.296 0.71% 0.239 -18.73%
avg. leader relative quality 0.703 0.700 -0.45% 0.708 0.76% 0.653 -7.06%
std. dev. leader rel. quality 0.171 0.171 0.21% 0.172 1.08% 0.166 -2.73%

superstar innovation 0.166 0.173 3.91% 0.164 -1.40% 0.177 6.34%
small firm innovation 0.014 0.015 7.73% 0.014 -2.52% 0.021 44.89%
output share of superstars 0.534 0.534 0.15% 0.535 0.29% 0.458 -14.16%
avg. superstars per industry 1.944 1.965 1.11% 1.923 -1.04% 2.174 11.87%
mass of small firms 1.000 1.000 0.01% 0.928 -7.20% 1.000 0.00%
initial output 0.901 0.901 0.05% 0.897 -0.39% 0.936 3.95%
CE Welfare change 1.95% -1.07% 1.32%

Notes: We estimate model with decreasing returns to scale as shown in Section C and carry out the same experiments as in the
baseline. The table reports the changes in model moments when setting parameters of interest back to their estimated levels in
the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.
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TABLE L8: DISENTANGLING THE STRUCTURAL TRANSITION — REVERSE COUNTERFACTUALS

Benchmark Late η % change Late ζ % change Late ν, ϵ % change

growth rate 2.19% 2.42% 10.51% 2.60% 19.00% 1.60% -26.66%
R&D intensity 2.07% 2.51% 21.39% 3.47% 67.39% 1.40% -32.53%
average markup 1.301 1.333 2.45% 1.468 12.83% 1.290 -0.88%
std. dev. markup 0.325 0.365 12.09% 0.406 24.89% 0.330 1.36%
labor share 0.628 0.620 -1.30% 0.570 -9.31% 0.634 1.03%
entry rate 0.114 0.114 0.00% 0.114 0.00% 0.114 0.00%
β(innov, relative sales) 0.683 0.775 13.45% 0.692 1.31% 0.703 2.89%
top point (intra-industry) 0.462 0.460 -0.37% 0.469 1.49% 0.435 -5.85%
avg. profitability 0.162 0.169 4.00% 0.225 38.36% 0.161 -1.08%
avg. leader relative quality 0.607 0.536 -11.75% 0.558 -8.17% 0.737 21.31%
std. dev. leader rel. quality 0.140 0.126 -10.11% 0.121 -13.50% 0.186 32.63%

superstar innovation 0.180 0.229 27.04% 0.230 27.71% 0.120 -33.22%
small firm innovation 0.028 0.054 95.54% 0.046 66.39% 0.009 -68.57%
output share of superstars 0.483 0.482 -0.24% 0.607 25.79% 0.450 -6.73%
avg. superstars per industry 2.412 2.992 24.07% 2.741 13.67% 1.798 -25.46%
mass of small firms 1.000 1.709 70.89% 1.580 57.98% 0.691 -30.86%
initial output 0.769 0.847 10.17% 0.756 -1.61% 0.758 -1.39%
CE Welfare change 16.13% 7.59% -14.18%

Benchmark Late χ, ϕ % change Late ψ, τ % change All % change

growth rate 2.19% 2.12% -3.30% 2.09% -4.24% 2.31% 5.71%
R&D intensity 2.07% 2.09% 0.89% 1.94% -6.48% 2.50% 20.49%
average markup 1.301 1.301 -0.02% 1.299 -0.16% 1.444 10.96%
std. dev. markup 0.325 0.326 0.13% 0.326 0.28% 0.452 39.00%
labor share 0.628 0.628 0.04% 0.629 0.19% 0.610 -2.79%
entry rate 0.114 0.114 0.00% 0.096 -15.72% 0.096 -15.72%
β(innov, relative sales) 0.683 0.707 3.51% 0.681 -0.30% 0.783 14.71%
top point (intra-industry) 0.462 0.460 -0.47% 0.454 -1.69% 0.448 -3.07%
avg. profitability 0.162 0.162 -0.31% 0.162 -0.15% 0.210 29.44%
avg. leader relative quality 0.607 0.619 1.93% 0.633 4.27% 0.678 11.66%
std. dev. leader rel. quality 0.140 0.141 0.69% 0.151 7.88% 0.165 18.03%

superstar innovation 0.180 0.170 -5.57% 0.168 -6.78% 0.169 -6.33%
small firm innovation 0.028 0.024 -14.06% 0.022 -20.92% 0.019 -31.65%
output share of superstars 0.483 0.481 -0.39% 0.477 -1.29% 0.516 6.90%
avg. superstars per industry 2.412 2.325 -3.58% 2.258 -6.36% 2.090 -13.36%
mass of small firms 1.000 0.905 -9.50% 0.700 -30.04% 1.000 0.00%
initial output 0.769 0.768 -0.06% 0.767 -0.27% 0.793 3.13%
CE Welfare change -1.87% -2.42% 5.92%

Notes: The table reports the change in model moments when setting the parameter of interest to its estimated level in late
sub-sample while keeping other parameters fixed at their estimated values in the early sub-sample.
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TABLE L9: DISENTANGLING THE STRUCTURAL TRANSITION — CONVEXITY = 2

Benchmark Early η % change Early ζ % change Early ν, ϵ % change

growth rate 2.01% 1.46% -27.65% 1.33% -34.08% 2.31% 14.79%
R&D intensity 4.29% 3.38% -21.20% 2.26% -47.18% 5.04% 17.64%
average markup 1.551 1.564 0.83% 1.343 -13.43% 1.560 0.60%
std. dev. markup 0.503 0.486 -3.52% 0.379 -24.64% 0.487 -3.32%
labor share 0.578 0.570 -1.38% 0.642 11.20% 0.571 -1.20%
entry rate 0.096 0.096 0.00% 0.096 0.00% 0.096 0.00%
β(innov, relative sales) 1.115 0.763 -31.56% 0.598 -46.34% 1.023 -8.24%
top point (intra-industry) 0.463 0.415 -10.33% 0.374 -19.15% 0.456 -1.48%
avg. profitability 0.233 0.252 8.09% 0.172 -26.15% 0.235 0.49%
avg. leader relative quality 0.684 0.769 12.41% 0.693 1.25% 0.627 -8.40%
std. dev. leader rel. quality 0.168 0.206 22.97% 0.190 13.12% 0.133 -20.70%

superstar innovation 0.142 0.103 -27.66% 0.095 -32.80% 0.166 16.80%
small firm innovation 0.013 0.004 -66.42% 0.003 -80.37% 0.018 39.39%
output share of superstars 0.569 0.594 4.35% 0.461 -18.95% 0.597 4.84%
avg. superstars per industry 1.949 1.614 -17.19% 1.796 -7.88% 2.140 9.79%
mass of small firms 1.000 0.483 -51.69% 0.339 -66.07% 1.091 9.14%
initial output 0.802 0.746 -7.01% 0.865 7.84% 0.822 2.55%
CE Welfare change -18.32% -7.24% 9.60%

Benchmark Early χ, ϕ % change Early ψ, τ % change All % change

growth rate 2.01% 0.64% -68.16% 2.42% 20.36% 1.86% -7.59%
R&D intensity 4.29% 0.59% -86.21% 5.36% 25.11% 3.06% -28.57%
average markup 1.551 1.509 -2.70% 1.565 0.90% 1.319 -14.98%
std. dev. markup 0.503 0.567 12.70% 0.478 -5.04% 0.327 -34.94%
labor share 0.578 0.608 5.25% 0.567 -1.80% 0.620 7.40%
entry rate 0.096 0.096 0.00% 0.114 18.65% 0.114 18.65%
β(innov, relative sales) 1.115 6.391 473.04% 1.005 -9.90% 0.500 -55.13%
top point (intra-industry) 0.463 0.507 9.54% 0.452 -2.27% 0.347 -25.02%
avg. profitability 0.233 0.232 -0.49% 0.236 1.00% 0.162 -30.43%
avg. leader relative quality 0.684 0.879 28.40% 0.600 -12.27% 0.664 -3.00%
std. dev. leader rel. quality 0.168 0.132 -21.07% 0.113 -32.59% 0.179 6.69%

superstar innovation 0.142 0.038 -73.21% 0.176 23.79% 0.142 0.00%
small firm innovation 0.013 0.015 13.07% 0.022 71.70% 0.005 -60.68%
output share of superstars 0.569 0.452 -20.59% 0.610 7.26% 0.500 -12.08%
avg. superstars per industry 1.949 1.590 -18.45% 2.243 15.05% 1.858 -4.70%
mass of small firms 1.000 0.894 -10.60% 2.966 196.65% 1.000 0.00%
initial output 0.802 0.720 -10.18% 0.833 3.86% 0.811 1.14%
CE Welfare change -33.81% 13.78% -1.40%

Notes: Using the re-estimated baseline model with R&D cost convexity parameters ϵ and ϕ set to 2, we carry out the same
experiments as in the baseline. The table reports the changes in model moments when setting parameters of interest back to their
estimated levels in the early sub-sample while keeping other parameters fixed at their estimated values in the late sub-sample.

32



TABLE L10: COUNTER-EXAMPLE WITH FLIPPED DYNAMIC IMPACT OF REDUCING ζ – EXPERIMENT

Counter-example Baseline Reducing ζ by 25% % change

growth rate 0.71% 0.25% -65.01%
R&D intensity 2.87% 1.74% -39.13%
average markup 1.883 2.347 24.64%
std. dev. markup 0.478 0.940 96.81%
labor share 0.456 0.426 -6.56%
entry rate 0.115 0.115 0.00%
β(innov, relative sales) -8.645 -18.366 112.45%
top point (intra-industry) 0.599 0.503 -16.09%
avg. profitability 0.389 0.439 13.06%
avg. leader relative quality 0.674 0.937 39.06%
std. dev leader rel. quality 0.214 0.155 -27.37%

superstar innovation 0.120 0.039 -67.42%
small firm innovation 0.001 0.003 139.16%
output share of superstars 0.803 0.699 -12.88%
avg. superstars per industry 1.703 1.144 -32.83%
mass of small firms 1.000 1.450 44.98%
initial output 0.821 0.635 -22.56%
CE Welfare change -30.20%

Notes: This table presents the changes in the relevant macroeconomic aggregates when the relative productivity of the
competitive fringe ζ is reduced to 75% of its value in the counter-example economy.

TABLE L11: COUNTER-EXAMPLE WITH FLIPPED DYNAMIC IMPACT OF REDUCING ζ – PARAMETERS

Parameter Description Values

λ innovation step size 0.1244
η elasticity within industry 13.2030
χ superstar cost scale 4.5125
ν small firm cost scale 2.8312
ζ competitive fringe ratio 0.4075
ϕ superstar cost convexity 2.2666
ϵ small firm cost convexity 1.2340
τ exit rate 0.1151
ψ entry cost scale 0.0075

Notes: This table presents parameters that are used in the counter-example shown in Table L10.
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TABLE L12: CHANGES IN STATIC EFFICIENCY FOR THE MODEL WITH COLLUDING FRINGE

∆W CEWC

competitive fringe productivity 3.297 14.10%
relative wage -0.427 -1.69%
output of superstar firms -1.998 -7.68%
consumption/output 0.000 0.00%
output growth 0.000 0.00%
total 0.872 3.55%

Notes: The table reports the changes in static efficiency for the model with colluding fringe as shown in Section C when setting
ζ back to its estimated level in the early subsample while keeping other parameters fixed at their estimated values in the late
subsample.

TABLE L13: MODEL PARAMETERS AND TARGET MOMENTS — BERTRAND COMPETITION

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2964 0.3235
η elasticity within industry 5.0481 4.4352
χ superstar cost scale 226.3518 101.5290
ν small firm cost scale 1.2287 2.0047
ζ competitive fringe ratio 0.6049 0.5230
ϕ superstar cost convexity 4.0661 3.7156
ϵ small firm cost convexity 3.0752 2.5098
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0402 0.0530

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.25% 2.31% 2.30%
R&D intensity 2.40% 2.31% 2.50% 2.59%
average markup 1.3014 1.3043 1.4442 1.4043
std. dev. markup 0.306 0.238 0.421 0.303
labor share 0.656 0.611 0.644 0.599
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.894 0.631 1.053
top point (intra-industry) 0.443 0.492 0.515 0.489
average profitability 0.136 0.182 0.152 0.224
average leader relative quality 0.751 0.572 0.746 0.678
std. dev. leader relative quality 0.224 0.151 0.222 0.173

Notes: We estimate the model with Bertrand competition in Section E using the simulated method of moments. Panel A reports
the estimated parameters. Panel B reports the simulated and actual moments.

34



TABLE L14: MODEL PARAMETERS AND TARGET MOMENTS — n̄ = 6

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2074 0.2415
η elasticity within industry 21.8696 5.9872
χ superstar cost scale 35.4096 32.2514
ν small firm cost scale 1.2204 1.9232
ζ competitive fringe ratio 0.6003 0.5370
ϕ superstar cost convexity 3.8410 3.6361
ϵ small firm cost convexity 2.7888 2.3619
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0079 0.0244

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.17% 2.31% 2.31%
R&D intensity 2.40% 2.39% 2.50% 2.69%
average markup 1.3014 1.3163 1.4442 1.4416
std. dev. markup 0.306 0.326 0.421 0.446
labor share 0.656 0.621 0.644 0.610
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.771 0.631 0.914
top point (intra-industry) 0.443 0.453 0.515 0.448
average profitability 0.136 0.169 0.152 0.209
average leader relative quality 0.751 0.605 0.746 0.652
std. dev. leader relative quality 0.224 0.137 0.222 0.160

Notes: The baseline model is re-estimated using the simulated method of moments, with the maximum number of productivity
steps between any two superstar firms, n̄, set to 6. Panel A reports the estimated parameters. Panel B reports the simulated and
actual moments.
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TABLE L15: MODEL PARAMETERS AND TARGET MOMENTS — TOTAL INTANGIBLE INVESTMENT

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2534 0.2943
η elasticity within industry 20.9179 7.0532
χ superstar cost scale 97.8103 65.5492
ν small firm cost scale 1.3744 2.3948
ζ competitive fringe ratio 0.5792 0.5072
ϕ superstar cost convexity 4.0096 3.6158
ϵ small firm cost convexity 2.4831 2.3904
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0164 0.0326

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.25% 2.31% 2.34%
intangible investment intensity 3.98% 2.53% 4.28% 3.01%
average markup 1.3014 1.3565 1.4442 1.4933
std. dev. markup 0.306 0.351 0.421 0.464
labor share 0.656 0.607 0.644 0.592
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 3.403 5.862 5.343 7.556
top point (intra-industry) 0.562 0.430 0.509 0.442
average profitability 0.136 0.186 0.152 0.228
average leader relative quality 0.751 0.603 0.746 0.643
std. dev. leader relative quality 0.224 0.149 0.222 0.159

Notes: We examine the robustness of our quantitative results by conducting an alternative estimation for the early and late
subsamples in which we target (1) a measure of aggregate intangible investment to GDP rather than R&D to GDP alone, and
(2) use a firm-year-level measure of total intangible investment to measure innovation, as opposed to relying on patent data,
when obtaining the data moments that let us replicate the inverted-U relationship between innovation and relative sales. Panel A
reports the estimated parameters. Panel B reports the simulated and actual moments.
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TABLE L16: MODEL PARAMETERS AND TARGET MOMENTS —DECREASING RETURNS TO SCALE

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.3009 0.3202
η elasticity within industry 8.7117 6.5279
χ superstar cost scale 106.5888 71.0248
ν small firm cost scale 1.3808 0.8403
ζ competitive fringe ratio 0.6806 0.5615
ϕ superstar cost convexity 3.8689 3.6394
ϵ small firm cost convexity 2.1112 1.6198
τ exit rate 0.1144 0.0964
ψ entry cost scale 1.5545 1.8038

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 2.19% 2.31% 2.31%
R&D intensity 2.40% 2.11% 2.50% 2.78%
average markup 1.3014 1.2961 1.4442 1.4687
std. dev. markup 0.306 0.339 0.421 0.467
labor share 0.656 0.570 0.644 0.542
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.729 0.631 0.782
top point (intra-industry) 0.443 0.438 0.515 0.436
average profitability 0.136 0.239 0.152 0.294
average leader relative quality 0.751 0.653 0.746 0.703
std. dev. leader relative quality 0.224 0.166 0.222 0.171

Notes: We estimate the model with decreasing return to scale in Section C using the simulated method of moments. Panel A
reports the estimated parameters. Panel B reports the simulated and actual moments. Following notations in Section C.1, the
degree of return to scale is determined by α which is set to 0.9 in our estimation.
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TABLE L17: MODEL PARAMETERS AND TARGET MOMENTS — CONVEXITY=2

A. Parameter estimates

Parameter Description Early sub-sample Late sub-sample

λ innovation step size 0.2924 0.3159
η elasticity within industry 12.0424 6.0021
χ superstar cost scale 1.8798 3.0228
ν small firm cost scale 0.4033 0.7179
ζ competitive fringe ratio 0.6128 0.4866
ϕ superstar cost convexity 2.0000 2.0000
ϵ small firm cost convexity 2.0000 2.0000
τ exit rate 0.1144 0.0964
ψ entry cost scale 0.0010 0.0089

B. Moments

Early sub-sample Late sub-sample
Target moments Data Model Data Model

growth rate 2.19% 1.86% 2.31% 2.01%
R&D intensity 2.40% 3.06% 2.50% 4.29%
average markup 1.3014 1.3185 1.4442 1.5509
std. dev. markup 0.306 0.327 0.421 0.503
labor share 0.656 0.620 0.644 0.578
firm entry rate 0.114 0.114 0.096 0.096
β(innovation, relative sales) 0.449 0.500 0.631 1.115
top point (intra-industry) 0.443 0.347 0.515 0.463
average profitability 0.136 0.162 0.152 0.233
average leader relative quality 0.751 0.664 0.746 0.684
std. dev. leader relative quality 0.224 0.179 0.222 0.168

Notes: The baseline model is re-estimated using the simulated method of moments, with the R&D cost convexity parameters, ϕ
and ϵ, set to 2. Panel A reports the estimated parameters. Panel B reports the simulated and actual moments.
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TABLE L18: THE DIMENSIONALITY OF THE FIRM STATE VARIABLE

N̄ = 2 N̄ = 3 N̄ = 4 N̄ = 5 N̄ = 6 N̄ = 7 N̄ = 8

n̄ = 1 4 11 26 57 120 247 502
n̄ = 2 6 25 90 301 966 3,025 9,330
n̄ = 3 8 45 220 1,001 4,368 18,565 77,540
n̄ = 4 10 71 440 2,541 14,070 75,811 400,900
n̄ = 5 12 103 774 5,425 36,456 238,267 1,527,258
n̄ = 6 14 141 1,246 10,277 81,270 624,877 4,710,062
n̄ = 7 16 185 1,880 17,841 162,336 1,435,945 12,448,360
n̄ = 8 18 235 2,700 28,981 298,278 2,984,095 29,253,600

Notes: This table reports the dimensionality of the firm state variable for each specific value of the maximum number of superstars
in an industry, N̄, and the maximum number of productivity steps between any two superstar firms, n̄.

TABLE L19: THE DIMENSIONALITY OF THE INDUSTRY STATE VARIABLE

N̄ = 2 N̄ = 3 N̄ = 4 N̄ = 5 N̄ = 6 N̄ = 7 N̄ = 8

n̄ = 1 3 6 10 15 20 25 30
n̄ = 2 4 10 20 35 65 125 245
n̄ = 3 5 15 35 70 175 490 1,435
n̄ = 4 6 21 56 126 406 1,526 6,006
n̄ = 5 7 28 84 210 840 3,990 19,740
n̄ = 6 8 36 120 330 1,590 9,150 54,510
n̄ = 7 9 45 165 495 2,805 18,975 132,165
n̄ = 8 10 55 220 715 4,675 36,355 289,795

Notes: This table reports the dimensionality of the industry state variable for each specific value of the maximum number of
superstars in an industry, N̄, and the maximum number of productivity steps between any two superstar firms, n̄.
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TABLE L20: FIRM INNOVATION AND RELATIVE SALES – SINGLE-INDUSTRY FIRMS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 14.491 15.476 9.738 23.569
(2.801)*** (3.351)*** (3.354)*** (3.569)***

relative sales sq. -19.213 -21.820 -10.539 -26.210
(4.199)*** (5.326)*** (4.680)** (5.083)***

R2 0.16 0.13 0.26 0.22
N 21,540 21,540 21,540 21,540

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 1.896 3.721 1.507 0.870
(0.304)*** (0.489)*** (0.190)*** (0.118)***

relative sales sq. -1.826 -3.952 -1.767 -0.955
(0.395)*** (0.627)*** (0.253)*** (0.149)***

R2 0.49 0.42 0.95 0.95
N 21,540 21,540 12,700 21,540

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 12.097 14.566 0.451 0.328 0.500
(0.784)*** (0.526)*** (0.066)*** (0.050)*** (0.065)***

relative sales sq. -12.803 -15.448 -0.520 -0.353 -0.526
(1.122)*** (0.830)*** (0.091)*** (0.071)*** (0.093)***

R2 0.63 0.58 0.15 0.16 0.17
N 7,806 21,321 20,280 18,705 20,907

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from 1976
to 2004 at the annual frequency, restricted to observations that only operate in a single 4-digit SIC industry. All regressions control
for profitability, leverage, market-to-book ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock price, year
dummies, and a full set of four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE L21: FIRM INNOVATION AND RELATIVE SALES – MULTIPLE-INDUSTRY FIRMS

Panel A

avg. citations tail innov. (10%) avg. originality avg. generality

relative sales 6.751 5.465 8.345 16.093
(1.293)*** (1.484)*** (1.959)*** (2.054)***

relative sales sq. -6.442 -5.081 -6.016 -13.162
(1.524)*** (1.924)*** (2.372)** (2.502)***

R2 0.15 0.10 0.26 0.26
N 83,371 83,371 83,371 83,371

Panel B

log total patents log total citations log R&D spending log R&D spending 2

relative sales 2.167 3.502 1.358 0.996
(0.213)*** (0.332)*** (0.101)*** (0.087)***

relative sales sq. -1.450 -2.550 -1.184 -0.921
(0.286)*** (0.429)*** (0.128)*** (0.113)***

R2 0.59 0.52 0.96 0.94
N 83,371 83,371 48,486 83,371

Panel C

log(xad) log(capx) sales growth employment growth asset growth

relative sales 10.446 11.560 0.202 0.146 0.174
(0.351)*** (0.236)*** (0.021)*** (0.017)*** (0.022)***

relative sales sq. -9.690 -10.525 -0.178 -0.132 -0.151
(0.455)*** (0.300)*** (0.025)*** (0.020)*** (0.026)***

R2 0.75 0.71 0.13 0.13 0.15
N 29,973 82,237 82,446 78,013 82,691

Notes: Robust asymptotic standard errors reported in parentheses are clustered at the firm level. The sample period is from 1976
to 2004 at the annual frequency, restricted to observations that operate in more than one 4-digit SIC industry. All regressions
control for profitability, leverage, market-to-book ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock
price, year dummies, and a full set of four-digit SIC industry dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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TABLE L22: CR4 DISTRIBUTIONS: DATA VS. MODEL

CR4 Data Model

Mean 48.41% 46.67%
25th percentile 35.20% 37.64%
50th percentile 46.86% 45.86%
75th percentile 54.22% 54.55%

Notes: This table reports the distribution of four-firm concentration ratio (CR4), representing the market share of the four largest
firms in each industry, both in the data and the model. The CR4 in the data is calculated based on all 3-digit BEA industries
between 1976-2004 using Compustat data for top firms. The CR4 in the model is calculated based on the parameter estimates of
the whole sample (1976-2004). All statistics are calculated using total industry sales as weights.
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FIGURE L1: INNOVATION, R&D EXPENSES, AND FIRM RELATIVE SALES

Notes: This figure displays the relationship between the raw values of average patent citations and firm relative sales in the left
panel, and the relationship between the log of R&D expenses and firm relative sales in the right panel. We divide the relative sales
into 200 quantiles and calculate the average value of innovation and R&D expenses for each quantile. The blue curve illustrates
the quadratic fit of innovation and R&D expense against firm relative sales.
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FIGURE L2: NUMBER OF SUPERSTAR FIRM DISTRIBUTION COMPARISON

Notes: This figure illustrates the distribution of industries over states with a different number of superstar firms in the early
subsample (left panel) and late subsample (right panel) for the baseline model where N̄ is set to 4 and an alternative model
where N̄ is set to 5.
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FIGURE L3: DIFFERENCES IN LOG INDUSTRY OUTPUT BETWEEN BASELINE AND COLLUDING FRINGE MODEL

Notes: We calculate log industry output in each industry state using the baseline model that was estimated using the whole
sample, as well as the early and late period subsamples. Then, using the same parameter values, we calculate the log industry
output in each industry state using the alternative model with the colluding fringe as shown in Section C. The three subfigures of
this figure depict the log industry output in the baseline model minus that in the alternative model for each industry state for the
three estimations, where the size of a dot indicates the fraction of the industry state µ(Θ) in the baseline stationary equilibrium.
N denotes the number of superstar firms in the industry the observation is coming from.
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