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The misallocation of talent in innovation – “missing Einsteins” – has a first-order impact 

on growth and welfare. Surname-level empirical analysis combining inventor and census 

micro-data reveals people from richer backgrounds are more likely to become inventors, 

but those from high-education backgrounds become more prolific inventors. Motivated by 

this discrepancy, an endogenous growth model with financial frictions on the household 

side is developed. Individuals compete for scarce inventor training. The rich can become 

inventors even if mediocre through excessive credentialing spending. Shutting down cre- 

dentialing spending raises innovation, growth, welfare, and inequality. Optimal progressive 

bequest taxes increase growth and welfare, but reduce inequality. 
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1. Introduction 

Albert Einstein was born in Ulm on March 14, 1879. His father was Hermann Einstein, a rich salesman and engineer, 

and owned a company called Elektrotechnische Fabrik J. Einstein & Cie that manufactured electrical equipment based on 

direct current. Albert received his education in various high quality schools in Germany, Italy, and Switzerland, and his alma 

mater was ETH Zurich. As a scientist and inventor, he produced over 300 scientific papers and 50 patented inventions. His 

groundbreaking contributions in the field of physics changed the technological landscape. What would happen, though, if 

his parents were poor and he could not receive the education he had? How would a world look like with Einstein as a 

factory worker instead of a scientist? Better yet, how do we know if we are not missing out on potential Einsteins right 

now? 
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Allocation of talent – assigning the right people to the right jobs – can have a first-order effect on the productivity of a 

society. The susceptibility of the allocation mechanism to be distorted away from the socially optimal outcome by private 

expenditures might create significant welfare losses in the presence of high levels of inequality in private resources. The 

losses are especially magnified if the best and the brightest of a society are not allocated to the professions where their 

social contribution would be the greatest. This paper aims to quantify the misallocation of talent in the United States due to 

economic inequality, with particular emphasis on its effects on innovation, and hence the long-run prospects of the country. 

Parents spend considerable time and resources in order to improve the likelihood that their children end up with a 

desired job. The education system serves two main purposes in this regard: improving human capital, and credentialing 

people’s talents. 1 The credentialing part can be seen as a tournament in which individuals seek to improve their overall 

ranking compared to others in order to improve their job market prospects. In 2010, the United States spent 7.3% of its 

gross domestic product on education, and the share of private spending was 7.7% for pre-college and 63.7% for college 

education ( OECD, 2013 ). Annual expenditure per student in college education was $25,575, with total yearly cost going up 

to $60,0 0 0 for elite universities. At the same time, the net wage of the median worker was $26,364, whereas the median 

inventor earned above $10 0,0 0 0 per year. In such a high stakes environment where both the rewards and means to achieve 

them are unequal, financial frictions can easily prevent the talented children of poor families from being assigned to jobs 

suitable to their abilities since they are crowded out by the less talented children from richer families. Is this what actually 

happens in reality, or can we conclude that “the cream always rises to the top” regardless of inefficiencies of the system? 

The first contribution of this paper is to provide empirical evidence on the misallocation of talent in innovation. Informa- 

tion on innovation activities in the United States is obtained from inventor and patent level data from United States Patent 

and Trademark Office (USPTO). This data includes all patents granted in the United States between 1976 and 2006, as well 

as all registered inventors of these innovations. Inventors are identified uniquely throughout their careers, but direct infor- 

mation on their parental background is unavailable. In order to overcome this issue, surnames of the inventors are used as a 

proxy, and the inventor data is linked to socioeconomic background information at the surname level from U.S. census data 

(1930). The stylized facts obtained can be summarized as follows: 2 

Fact 1: Individuals from richer backgrounds are much more likely to become inventors (23.9%); whereas those from more 

educated backgrounds experience no similar advantage (0.1%). 

Fact 2: Conditional on becoming an inventor, individuals from more educated backgrounds turn out to be much more 

prolific inventors (17.5%); whereas those from richer backgrounds exhibit no such aptitude (0.1%). 

When the two facts are considered together, it appears that the misallocation of talent is an issue for inventors. Fact 2 

shows that it is the education associated with the surname and not income that predicts higher inventor quality today. This 

is intuitive, since education and (unobserved) innate ability are likely to be complementary (or at least highly correlated), 

and in the presence of persistence of innate ability across generations, one would expect the descendants of the more edu- 

cated to be better inventors today conditional on becoming one. However, Fact 1 shows that it is income and not education 

that predicts higher chances of becoming an inventor today. This can be interpreted as the allocation system choosing the 

wrong people as inventors. Those who come from families that were wealthier but had average education in the past have 

a higher chance of becoming inventors, but perform poorly conditional on becoming one. This observed discrepancy pro- 

vides the motivation to investigate the issue of misallocation of talent in innovation quantitatively, so that its impact on the 

society can be assessed. 3 

In order to quantify the effects of the misallocation of talent in innovation and to analyze potential policy changes that 

might alleviate the inefficiency, a new model which can accommodate the observed correlation patterns is developed. The 

firm side is a tractable endogenous growth model that admits closed-form solutions: Firms undertake routine production 

using unskilled labor, and generate productivity-improving innovations (featuring positive intertemporal spillovers between 

firms) via research and development conducted by hired inventors. The household side is modeled in a detailed fashion, 

borrowing from heterogeneous agents models in order to make the model capable of replicating the patterns observed in 

the data. 4 The households are heterogeneous in wealth, education, and unobserved innate ability that is persistent across 

generations. Parents invest in the pre-college education of their offspring and leave bequests. 5 The training necessary to 

become inventors is scarce; hence, individuals compete against each other in a tournament setting to receive it. Factors that 

1 Education’s role in improving human capital is discussed in the literature review. For the use of education in credentialing people’s talents (as a 

“signaling” device), see Spence (1973) , Stiglitz (1975) and Fernandez and Gali (1999) . 
2 The numbers in parentheses correspond to how much one standard deviation increase in the independent variable causes the dependent variable to 

increase compared to its own standard deviation. The details of the empirical analysis can be found in Section 3 . 
3 It is also noteworthy that the family background measures have such a high explanatory power. For instance, it is found that one standard deviation 

increase in the income associated with the surname in 1930 increases the relative probability of becoming an inventor by 23 . 9% . Given that the measures 

are constructed at the surname level, and across two to three generations, just knowing the surname of an individual makes it possible to predict his 

or her chances of becoming an inventor to a high degree. This means the intergenerational mobility in socioeconomic status as captured by the relative 

probability of becoming an inventor is quite low, which is consistent with other studies that exploit the informational content of names and surnames 

[ Clark (2014) , Guell et al. (2015) , Olivetti and Paserman (2015) ]. 
4 This is in the spirit of Aiyagari (1994) since the heterogeneity of households is considered in a general equilibrium setting, where the distributions of 

household characteristics affect the prices and the growth rate in the economy. 
5 Throughout the paper, the term bequest is used to refer to any transfer of resources to the descendants, including inter-vivos transfers. 
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improve inventor productivity such as innate ability and education increase the probability of receiving this training; but 

so does private credentialing spending which is unproductive by itself. Thus, individuals who inherit generous bequests can 

become inventors even if they are of mediocre talent through excessive spending on credentialing, preventing more talented 

individuals from poorer backgrounds from becoming one. This is individually rational but socially inefficient, reducing the 

quality of the inventor pool used in generating productivity-improving innovations that drive economic growth. 

The tournament mechanism is the key ingredient that enables the model to replicate the stylized facts. In an ideal 

world, a social planner would prefer to allocate the best and the brightest of the society to the innovation sector, leading to 

a positive assortative matching between the talents of individuals and the (social as well as private) productivity of the jobs. 

However, if this were the case, the discrepancy between the parental backgrounds of those who become inventors and those 

who succeed as inventors would not be empirically observed. In order to allow the model to generate different correlation 

patterns at the two margins, individuals receive inventor training based on a score that depends differentially on innate 

ability, pre-college education and credentialing spending. The strength of each component in improving inventor probability 

as opposed to inventor productivity has different implications for the correlations of ancestor education and income with 

the two outcome variables, and this provides the main identification in the calibration of the model. 

The model is calibrated to match the new stylized facts and data moments from the U.S. economy where an exercise 

in indirect inference pins down the influence of the new credentialing spending channel by replicating the two regressions 

from the empirical analysis using model-generated data. The calibrated model is then used to measure the economic impor- 

tance of the misallocation of talent in innovation. A thought experiment in which the credentialing spending channel is shut 

down reveals that the aggregate growth rate of the economy can be increased by 10% of its value by assigning more tal- 

ented and better educated individuals as inventors. As a result, the consumption inequality in the economy increases, which 

is detrimental to overall welfare; however the gain in output growth rate more than compensates for this loss, resulting in 

a welfare gain of 5.96% in consumption-equivalent terms. 6 

Seeking to alleviate the effects of misallocation in a decentralized economy, optimal progressive bequest taxes are calcu- 

lated, the adoption of which is found to increase output growth rate by 2.5% of its value. This increase is again through the 

allocation of higher innate ability individuals as inventors, who are also more educated on average. The progressive nature 

of the taxes causes the overall consumption inequality to remain the same. The increase in the output growth rate and the 

relatively unchanged consumption inequality lead to a social welfare gain of 6.20% in consumption-equivalent terms. This is 

higher compared to the credentialing spending shut-down experiment. The optimal bequest tax policy that achieves these 

results is quite progressive: The average bequest tax rate faced by the top 1% is 12.1%, whereas this number falls to 4.2% for 

the top 10%. The bottom 95% of the households are net recipients, whereas only the top 5% pay into the system. 

The paper relates to the growing literature on misallocation. 7 One of the closest papers in this literature is Hsieh et al. 

(2019) where the misallocation of talent results from barriers to entry faced by distinct demographic groups based on gender 

and race for certain occupations. Guner et al. (2018) show that selection and skill investments of managers in the presence 

of distortions can explain a large fraction of cross-country differences in output per worker. Another close paper is Jovanovic 

(2014) where workers and jobs are heterogeneous in quality, and are matched with each other under search frictions which 

affects the amount of on-the-job training, and the transition to the balanced growth path. This paper differs from these 

works by its emphasis on the financial frictions channel, and the focus on how innovation activities are influenced as a 

result. Empirically, there is one concurrent and two follow-up papers which reveal facts regarding inventors consistent with 

this study: Bell et al. (2019) find out that individuals from higher income families are more likely to become inventors 

using U.S. social security data. Aghion et al. (2018) use Finnish data to document the same, and show that controlling 

for the education of the inventor makes this correlation economically insignificant. Akcigit et al. (2017) show the positive 

correlation with parental income holds for historical inventor data from 1940 in the U.S. 

Another closely related field is the modern literature on inequality and economic growth and development. 8 This paper 

proposes a new mechanism through which wealth inequality can negatively influence long-term economic growth. It differs 

from the literature in that it acknowledges the scarce nature of training necessary to become an inventor, and focuses on 

how competition for this might create a misallocation of talent between routine production and innovation. Another differ- 

ence is the source of economic growth. Unlike the previous literature which focuses on the accumulation of human capital, 

economic growth in the proposed model is driven by technological change as a result of firms investing in innovative activi- 

ties, similar to the literature on endogenous growth with quality improvements pioneered by Aghion and Howitt (1992) , and 

in the spirit of the broader endogenous growth literature. 9 The firm side of the model builds upon Akcigit et al. (2016) . To 

my knowledge, this is the first paper to combine an innovation-based endogenous growth model with a general equilibrium 

heterogeneous agents model as in Aiyagari (1994) . Recent work by Aghion et al. (2019) investigates the relationship between 

innovation and top income inequality. The quantitative results of the current paper are in line with their empirical finding 

of a positive correlation between the two. 

6 Welfare is defined as expected utility at the steady state. 
7 Some examples are Acemoglu et al. (2018) , Akcigit et al. (2016) , Guner et al. (2008) , Hsieh and Klenow (2009) , Hsieh et al. (2019) , Jones (2013) , 

Jovanovic (2014) , and Restuccia and Rogerson (2008) . 
8 See among others: Galor and Zeira (1988, 1994) , Banerjee and Newman (1993) , Maoz and Moav (1999) , and Galor (2009) for a literature review. 
9 Lucas (1988) , Romer (1990) , Lucas (2009) , Alvarez et al. (2017) , Lucas and Moll (2014) . See Aghion and Howitt (2009) , Acemoglu (2009) and Aghion 

et al. (2014) for literature surveys. 
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The focus on who become inventors versus who make prolific inventors conditional on becoming one links this work 

to the extensive literature on nature versus nurture, human capital and skill formation. 10 This literature is quite diverse, 

ranging from theoretical work such as the classic Becker and Tomes (1979) model, to empirical estimates exploiting rare 

datasets such as that on twins ( Behrman et al., 1994 ) to separate the effects of nature and nurture. This paper investigates 

a related question, but focuses on inventors and their productivities in coming up with disruptive inventions as captured by 

patents. 11 This enables the use of the two new stylized facts obtained in the empirical analysis to tease out the persistence 

of innate ability versus the socioeconomic status persistence due to intergenerational wealth transmission. The model is 

close in spirit to Becker and Tomes (1979) type models, where parents cannot borrow against the future income of their 

dynasties, or insure themselves against idiosyncratic risks. 

Finally, the policy experiment on optimal taxation of bequests links the paper to the literature on optimal taxation. 12 

Two close papers in this field are Krueger and Ludwig (2013) and Stantcheva (2017) , where optimal progressive taxation 

and education subsidies are calculated in a model with heterogeneous households where human capital formation is also 

endogenous. The model in this paper also features endogenous human capital accummulation, but enhances the problem 

by adding in misallocation of talent, and its effects on innovation and long-run productivity growth. This naturally leads to 

differences in the effectiveness of different policies in alleviating the inefficiencies that stem from financial frictions. 

The rest of the paper is organized as follows: Section 2 presents the theoretical model. Section 3 describes the datasets 

employed and variables constructed in the empirical analysis, and the resulting stylized facts. Section 4 describes the cali- 

bration of the model and the indirect inference. Section 5 presents and discusses the results of the quantitative experiments. 

Section 6 concludes. 

2. Model 

2.1. Environment and preferences 

Time is discrete, and denoted by t = 0 , 1 , 2 , ... There is a continuum of households indexed by m ∈ [0 , 1] . Households are 

modeled in an overlapping generations framework, where each generation lives for three periods: child, young adult and 

old adult. Children are born when their parents are young adults. Parents interact with their children in three ways: Parents 

(i) choose their children’s consumption before they become adults, (ii) invest in their pre-college education, 13 and (iii) leave 

non-negative bequests to them upon death. Parents care about their children, and the relative weight of the utility of their 

offspring is denoted by the altruism parameter α > 0 . Preferences over consumption are time-separable with time discount 

factor β and exhibit constant relative risk aversion with parameter ω. Thus, the lifetime utility of the generation born at 

time t of household m can be expressed as 

U m,t ( � c m,t ) = E t 

[
c 1 −ω 

c,m,t 

1 − ω 

+ β
c 1 −ω 

y,m,t 

1 − ω 

+ β2 
c 1 −ω 

o,m,t 

1 − ω 

+ αβU m,t+1 ( � c m,t+1 ) 

]
(1) 

where c c,m,t , c y,m,t and c o,m,t denote the consumption of generation t of household m at child, young (adult), and old (adult) 

periods, respectively, and 

�
 c m,t = { c c,m,T , c y,m,T , c o,m,T } ∞ 

T = t . 

2.2. Technology 

2.2.1. Production and innovation 

The final good is competitively produced by a continuum of firms indexed by i ∈ [0 , 1] which combine capital k and 

unskilled labor l u according to the formula 

o(z, k, l u ) = z ζ k κ l λu (2) 

where z stands for the firm-specific productivity, o denotes final good output, and ζ + κ + λ = 1 . Firms pay real interest rate 

plus depreciation r + δ and unskilled real wage rate w u for capital and unskilled labor services, respectively. 

Firms can engage in risky innovation activities in order to increase their productivity if successful. Conditional on suc- 

cessful innovation, the productivity of the firm in the next period evolves according to the law of motion given by 

z ′ = z + γ z̄ (3) 

10 Becker (1964) , Ben-Porath (1967) , Behrman et al. (1977) , Becker and Tomes (1979) , Becker and Tomes (1986) , Behrman et al. (1994) , Aiyagari et al. 

(2002) , Heckman et al. (2006) , Cunha and Heckman (2007) , Dahl and Lochner (2012) , Lee and Seshadri (2019) . See Cunha et al. (2006) for a survey. 
11 While the focus of this paper is on inventors and patents, a misallocation of talent can occur in any high-paying profession. Applying the same empirical 

methodology to economists listed on IDEAS/RePEc, and top managers of publicly-listed US companies yields similar correlation patterns. 
12 Anderberg (2009) , Bohacek and Kapicka (2008) , Findeisen and Sachs (2016) , Grochulski and Piskorski (2010) , Kapicka (2015) , Kapicka and Neira (2019) , 

Krueger and Ludwig (2013) , Stantcheva (2017) . 
13 Individuals invest in their own college education when they become young adults, which is discussed later on. 
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where z ′ and z are the new and old productivities, z̄ is the average productivity in the economy, and γ > 0 is a scale 

parameter. 14 Firms that fail to innovate retain their old productivity, z ′ = z. In order to increase the probability of successful 

innovation, firms must hire skilled labor. For a firm that hires l s amount of skilled labor, the probability of a successful 

innovation is given by 

i (l s ) = χ l 
ξ
s (4) 

where χ > 0 is a scale parameter and ξ ∈ (0 , 1) introduces diminishing returns. 

2.2.2. Individual productivity, innate ability and pre-college education 

Each generation t of each household m is heterogeneous in innate ability a , and pre-college education h . The individual 

productivity of generation t of household m is a constant elasticity of substitution (CES) aggregate of a and h given by 

l m,t (h m,t , a m,t ) = 

(
ψh 

ε−1 
ε

m,t + (1 − ψ) a 
ε−1 
ε

m,t 

) ε
ε−1 

(5) 

where 0 < ψ < 1 is the share of pre-college education, and ε is the elasticity of substitution. Innate ability a and pre-college 

education h remain constant as an individual gets older. Individual productivity determines the effective labor supply of 

the individual. This labor contributes to the aggregate skilled or unskilled labor supply in the economy depending on the 

individual’s job allocation. 

The cost of endowing one’s offspring with education level h (denoted in terms of the final good) is given by the cost 

function 

c h (h, �) = κh h 

ξh z̄ ζ / (ζ+ λ) (6) 

where κh > 0 is a scale parameter, ξh > 1 introduces convexity, z̄ ζ / (ζ+ λ) ensures the cost scales up with aggregate output as 

the economy grows, and � is the aggregate state of the economy. 15 

The innate ability of an individual is determined at the transition from childhood to young adult status, and depends on 

the innate ability of the parent. It is governed by a stochastic AR(1) process given by 

log a ′ = (1 − ρ) μa + ρ log a + εa , εa ∼ N(0 , σ 2 
a ) (7) 

which has a mean of one. The variables a and a ′ denote the innate ability of the parent and the child respectively. The 

persistence parameter ρ determines how much of the parental ability the child inherits. The stochastic innate ability shock 

εa is normally distributed with a mean of zero and variance of σ 2 
a . 

2.2.3. College education, inventor training, and job allocation 

There are two types of jobs j in the economy: skilled/innovation jobs ( j = s ) and unskilled/production jobs ( j = u ). The 

job of an individual determines which pool his or her labor supply will contribute to, and hence the wage rate to be re- 

ceived per effective labor unit supplied ( w s if skilled and w u otherwise). Any worker in the economy can get a production 

job. However, in order to get an innovation job, the individual needs to receive college education at a high-quality institu- 

tion. This education provides the individual with the training necessary to create innovations, which will be referred to as 

“inventor training”. 16 

The ratio of inventor training available in the economy over total population is denoted by η ∈ (0 , 1) and assumed to be 

fixed. 17 Since innovation jobs pay better than production jobs in equilibrium, individuals would like to get innovation jobs. 18 

Because of this, inventor training is sought after; and since the supply is fixed, there is competition among individuals to 

receive it, which is cleared by the tournament mechanism described below. 

14 Note that the z̄ term in Equation (3) introduces intertemporal spillover effects between the firms in the economy which is a salient feature of modern 

endogenous growth models. The additive structure is chosen over multiplicative because (i) it allows for solving the firm value functions in closed form 

and (ii) it ensures the existence of an invariant firm size distribution in a stationary equilibrium. 
15 The aggregate state of the economy �t consists of the firm productivity distribution Z t (z) , the aggregate capital stock K t , the joint distribution of ability 

a , pre-college education h , and disposable income of the old y 0 , and the joint distributions of pre-college education and ability for unskilled and skilled 

workers (denoted as �u,t (h, a ) and �s,t (h, a ) respectively). With this information, one can then calculate the associated aggregate labor supplies L u,t and 

L s,t , the prices r t , w u,t , w s,t , the score cut-off s̄ t , and the output growth rate g t . 
16 A good real world example of the described college education would be an MSc or PhD degree in a STEM field at a high quality institution, which 

itself usually requires having a prestigious BSc degree. NSF National Survey of College Graduates (2003) reveals that two thirds of inventors in the U.S. 

have a graduate degree, whereas one third are PhD holders. In addition, Aghion et al. (2018) provide direct micro-evidence consistent with the described 

mechanism: Using data on inventors and their parents from Finland, the authors show that the probability of becoming an inventor is positively correlated 

with parental income and education when not controlling for the inventor’s own education. However, once the latter is included, parental income and 

education become insignificant, and inventor’s education captures virtually all of their predictive power. This is exactly in line with the predictions of the 

current model: Running the same regressions using model-simulated data produces the same pattern. 
17 An alternative assumption would be having no restrictions on η, but fixing the score threshold s̄ instead, so that any individual who has a sufficiently 

high score would get the inventor training. The quantitative experiments replicated with this alternative model deliver higher growth rate and welfare 

responses to parameter and policy changes, so fixing η is the conservative assumption. See Appendix C.1 for details. 
18 This is not a restriction of the model, but a result of the calibration exercise. See Section 4 for the details. 
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Fig. 1. Timing of events within a period. Notes: This figure summarizes the timing of events within a period. 

At the beginning of the young adult period and after observing the innate ability a , each individual receives a score given 

by 

˜ s (l(h, a ) , n ) = (1 − ν) l(h, a ) + νn + ε j , ε j ∼ N(0 , σ 2 
j ) (8) 

where l(h, a ) is individual productivity, n is credentialing spending (a choice variable), ν ∈ [0 , 1] is a parameter that gov- 

erns the relative power of credentialing n versus individual productivity l in determining the score, and ε j is a normally 

distributed shock. After the scores for each individual are realized, the fraction η of the individuals with the highest scores 

receive inventor training, and are able to work in the innovation sector. The remaining (1 − η) fraction of the individuals do 

not receive inventor training and cannot create innovations, and thus have to work in the production sector. 

In order to increase score upwards by the amount νn , the individual has to spend resources given by 

c n (n ) = κn n 

ξn z̄ ζ / (ζ+ λ) (9) 

in terms of the final good, where κn > 0 is a scale parameter, ξn > 1 introduces convexity, and z̄ ζ / (ζ+ λ) ensures the costs 

scale up with aggregate output as the economy grows. This choice variable n captures any real world spending that increases 

the chances of getting inventor training, such as hiring private tutors and private college counseling, re-taking standardized 

tests, covering tuition and living expenses out-of-pocket instead of relying on a scholarship, the opportunity cost of studying 

as opposed to joining the workforce, as well as high-cost extracurricular activities such as founding or leading one’s own 

non-governmental organization. 19 

Since the top η fraction of the score distribution receives inventor training, there exists a score threshold s̄ such that 

individuals with ˜ s ≥ s̄ receive inventor training, and the rest do not. In equilibrium, individuals with the necessary training 

always choose the innovation sector over the production sector, so the probability of getting inventor training and that of 

being a skilled worker are the same. The implied probability distribution of having job j for an individual is denoted by 

F ( j; l(h, a ) , n, �) . The aggregate state of the economy � matters, since the score of a worker is only meaningful compared 

to the score threshold s̄ , as relative rank determines who receives inventor training. The probability of having a skilled job 

is increasing in innate ability a , pre-college education h and credentialing spending n , whereas it is decreasing in the score 

threshold s̄ , which captures how competitive the tournament is given other households’ choices. 

2.3. Decision problems 

2.3.1. Timing of events 

Before moving on to the decision problems of the firms and the households, the timing of events within a period are 

listed below, which are also summarized in Figure 1 : 

1. The innate ability of young adults a y is observed. 

2. Old adults choose their bequests b and consumption c o . 

3. Young adults decide on credentialing spending n to receive a better score ˜ s . 

4. Scores ˜ s are observed, inventor training is provided, and young adults are assigned to their jobs j. 

5. Firms hire capital k and labor l u and l s for production and innovation. Production takes place and successful innovations 

are realized. Wages are paid. 

6. Young adults choose how much to consume c y , consumption of their children c c , pre-college education investment for 

their children h , and savings s . 

19 Parents spend considerable time and resources to improve the likelihood that their children obtain the best credentials possible. The most direct way 

they can help is to pay the tuition and living expenses for prestigious colleges, which can go up to 3-4 times the net wage of the median worker. But much 

more extravagant options exist as well. In a 2018 lawsuit, New York-based private college counseling firm Ivy Coach was revealed to charge a client $1.5 

million to help their child with college and boarding school applications. Other families are known to found charitable non-governmental organizations 

with their children installed as the manager in an effort to give a boost to the extracurricular activities part of their application. 
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2.3.2. Firm decision problems 

The static profit maximization problem of a firm is given by 

�(z, �) = max 
k,l u ≥0 

{ z ζ k κ l λu − (r + δ) k − w u l u } (10) 

where the firm pays real interest rate plus depreciation (r + δ) and unskilled real wage w u for capital and unskilled labor 

services, respectively. The associated capital and labor demand policy functions are denoted by ˆ k (z, �) and 

ˆ l u (z, �) . 

Given the period profits �(z, �) from the static maximization problem and the innovation technology described in Equa- 

tion (4) , the intertemporal maximization problem of a firm can be written in recursive form as follows: 

V (z, �) = max 
l s ≥0 

{
�(z, �) + 

χ l 
ξ
s 

1 + r 
V (z + γ z̄ , �′ ) + 

(1 − χ l 
ξ
s ) 

1 + r 
V (z, �′ ) − w s l s 

}
(11) 

The firm chooses how much skilled labor l s to hire, which increases the likelihood of successful innovation χ l 
ξ
s . If successful, 

the firm’s productivity next period is increased by γ z̄ . The prospect of earning higher profits in the future due to higher 

productivity provide incentives for the firm to engage in costly innovation. The skilled labor demand that solves this problem 

is denoted by ˆ l s (z, �) . 

2.3.3. Household decision problems 

Given the ingredients of the model, there are three relevant decision problems for each household in any given period: 

(i) the bequest decision of old adults, (ii) the credentialing spending decision of young adults before job allocation, (iii) the 

consumption, pre-college education investment and saving decisions of young adults after job allocation. 20 The associated 

value functions of the problems will be denoted by V o (. ) , V c (. ) and V y (. ) respectively. 

2.3.4. Decision problem of the old 

Let subscripts c, y and o stand for child, young and old respectively. Time subscripts will be suppressed for clarity. Let 

y denote wealth. Given the wealth of the old y o , the pre-college education h y and innate ability a y of the young, and the 

aggregate state of the economy �, the bequest decision problem of the old can be stated as 

V o (y o , h y , a y , �) = max 
c o ,b≥0 

{ u (c o ) + αV c (b, h y , a y , �) } s.t. (12) 

c o + b ≤ y 0 (13) 

where c o is the consumption of the old, b is the bequest left to the descendants and α > 0 is the altruism parameter. 

Old agents choose how much bequests b to leave to their children who are now young adults, at the cost of reducing 

their own consumption c o . The problem is solved by the choice of a single variable b since preferences ensure the budget 

constraint binds with equality. Note the financial restriction that the bequests must be positive. This disallows agents from 

borrowing against the future income of their dynasty to consume today, a seemingly mild, yet important, financial friction. 

The associated policy function is denoted by ˆ b (y o , h y , a y , �) . 

2.3.5. Decision problem of the young before job allocation 

Given the bequest amount b, the pre-college education h y and innate ability a y of the young, and the aggregate state of 

the economy �, the credentialing spending decision problem of the young before job allocation can be stated as follows: 

V c (b, h y , a y , �) = max 
n ≥0 

{ E [ V y (y y , a y , �) |·] } s.t. (14) 

y y = 

(
w j y + 

w 

′ 
j y 

1 + r ′ 

)
l y (h y , a y ) + b − c n (n ) (15) 

j y ∼ F ( j; l y (h y , a y ) , n, �) (16) 

where j y is a random variable that denotes job allocation and y y stands for wealth as a young adult after job allocation. 

The wealth of the young y y consists of the lifetime labor income and the bequests b received from parents, minus the 

credentialing spending to improve their score c n (n ) . At this stage, the only choice variable is the credentialing investment, 

denoted by n . Spending more resources increases the likelihood of getting a better job draw j y distributed according to 

F ( j; l, n, �) discussed earlier. The optimal n that solves this optimization problem is referred to as the credentialing spending 

policy function, ˆ n (b, h y , a y , �) . 

Note that young adults can borrow against their future lifetime labor income, so the model allows agents to borrow 

resources at the risk free interest rate r ′ to spend on credentialing which improves their chances of getting inventor training. 

On the other hand, they cannot insure themselves against the idiosyncratic risk of not getting inventor training, which is 

always positive due to the shock term ε j in Equation (8) . This forces them to be more prudent in increasing credentialing 

spending n by borrowing due to risk aversion. 

20 Children in a household have no decision problems to solve. They receive pre-college education chosen by their parents and consume. 
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2.3.6. Decision problem of the young after job allocation 

Given the wealth y y and the innate ability a y of the young, and the aggregate state of the economy �, the consumption, 

pre-college education investment and saving decision problem of the young after job allocation can be stated as follows: 

V y (y y , a y , �) = max 
c y ,c c ,h ′ y ,s ≥0 

{ u (c y ) + αu (c c ) + βE [ V o (y ′ o , h 

′ 
y , a 

′ 
y , �

′ ) |·] } s.t. (17) 

y y ≥ c y + c c + c h (h 

′ 
y ) + s (18) 

y ′ o = (1 + r ′ ) s (19) 

a ′ y ∼ g(a y ) (20) 

�′ = T (�) (21) 

Variables with primes indicate next period’s values. The choice variables are the consumption of the young and their chil- 

dren, c y and c c , the pre-college education investment in the children h ′ y which costs c h (h ′ y ) in terms of the final good, and 

the savings s . The sum of these expenditures must be below the wealth y y . The expectation is over the innate ability a ′ y 
of the child in the next period, which depends on the innate ability of the parent a y according to the law of motion given 

by Equation (7) . The aggregate state of the economy evolves according to the transition function T (. ) . The policy functions 

that solve this problem are given by ˆ c y (y y , a y , �) , ̂  c c (y y , a y , �) , ̂  h ′ y (y y , a y , �) and ˆ s (y y , a y , �) . 

2.4. Balanced growth path equilibrium 

Let Z(z) denote the distribution of firm productivities in the economy. Labor market clearing implies 

L u,t ≡
∫ 

ˆ l u,t (z, �) dZ(z) = 2(1 − η) 

∫ 
l(h, a ) d�u,t (h, a ) , and (22) 

L s,t ≡
∫ 

ˆ l s,t (z, �) dZ(z) = 2 η

∫ 
l(h, a ) d�s,t (h, a ) (23) 

where �u,t (h, a ) and �s,t (h, a ) denote the joint distribution of pre-college education and innate ability at time t for un- 

skilled and skilled workers respectively. The (1 − η) and η terms in the labor supply expressions are multiplied by average 

individual productivity because they designate the fraction of the population working in production and innovation sectors 

respectively. The terms are also multiplied by two since in any period both the young and old adults work. Aggregate savings 

in the economy is given by 

A t+1 ≡
∫ 

˜ a m,t−1 d ̃  A ( ̃  a ) (24) 

where ˜ a m,t ≡ s m,t − l(h m,t , a m,t ) w j m,t ,t+2 / (1 + r t+2 ) denotes the net savings of the young adults of household m born at time 

t . 21 There are two kinds of assets in the economy: physical capital and shares in the bundle of firms i ∈ [0 , 1] . Both assets 

pay the risk-free interest rate r t . 
22 The capital market clearing requires the physical capital supply in the economy to equal 

the aggregate capital demand of the firms given by 

K t ≡
∫ 

ˆ k t (z, �) dZ(z) . (25) 

Final good market clearing requires 

O t = C t + K t+1 − (1 − δ) K t + N t + H t (26) 

where O t denotes aggregate output and C t , N t , and H t are aggregate spending on consumption, credentialing, and pre-college 

education investment at time t , respectively. Finally, the number of people who receive inventor training must equal the 

exogenous restriction on their measure η. This imposes the condition 

η = 

∫ ∞ 

s̄ t 

˜ s d ̃  S t ( ̃  s ) (27) 

21 In order to calculate ˜ a m,t , the labor income to be earned in the old adult stage is subtracted from s m,t because it was included in the expression y y in 

the young agent’s recursive decision problem. This was done to reduce the number of state variables to keep track of in the associated value function V y (. ) . 
22 Although each firm i ∈ [0 , 1] faces idiosyncratic risk, aggregating over i makes profits received from the whole bundle a deterministic quantity due to 

the lack of aggregate fluctuations. Therefore, households that purchase a balanced portfolio of shares face no risk in their returns. 
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where ˜ S t ( ̃ s ) is the score distribution at time t and s̄ t is the score cut-off above which agents get inventor training. 

Given these ingredients, an equilibrium of this economy is defined as follows: 

Definition 1. An equilibrium is described by allocations [ { � c m,t , b m,t , n m,t , h y,m,t , s m,t } ∞ 

t=0 
] m ∈ [0 , 1] for households, allocations 

[ { z i,t , k i,t , l u,i,t , l s,i,t } ∞ 

t=0 ] i ∈ [0 , 1] for firms, prices { r t , w u,t , w s,t } ∞ 

t=0 , score cut-off { ̄s t } ∞ 

t=0 , firm productivity distribution { Z t (z) } ∞ 

t=0 , 

and joint distribution of jobs, pre-college education, and innate ability { �t ( j, h, a ) } ∞ 

t=0 
such that: 

1. Given prices and the score cut-off, household allocations maximize V o (y o , h y , a y , �) , 

V y (y y , a y , �) , and V c (b, h y , a y , �) . 

2. Given prices and the productivity distribution, firm allocations maximize �(z, �) and V (z, �) . 

3. All markets clear. 

Output growth in this economy is driven by improvements in the productivities of the firms given by the distribution 

Z t (z) . This paper focuses on the balanced growth path equilibrium where aggregate variables O t , K t , N t , H t , and C t grow 

at the constant rate g. Along the balanced growth path, it turns out that the mean of the firm productivity distribution, 

z̄ ≡ ∫ 
zdZ(z) , is a sufficient statistic to determine the growth rate of the economy. Let the growth rate of the mean produc- 

tivity z̄ be denoted by g z . Define transformed variables ˆ z ≡ z/ ̄z λ/ (λ+ ζ ) , ˜ z ≡ z̄ ζ / (λ+ ζ ) and ˜ w s ≡ w s / ̃ z . The balanced growth path 

equilibrium of this economy is described below. 

Theorem 1. The balanced growth path equilibrium of the economy has the following form: 

1. Aggregate allocations O t , K t , N t , H t , and C t , and wages w u,t and w s,t grow at the constant rate g. 

2. Aggregate labor allocations L u and L s , the real interest rate r, the score cut-off s̄ , and the joint distribution of jobs, pre-college 

education, and innate ability �( j, h, a ) are time-invariant. 

3. Mean of the firm productivity distribution z̄ grows at the constant rate g z , with 1 + g = (1 + g z ) ζ / (λ+ ζ ) . 

4. Period profits of a firm is linear in ˆ z , given by �(z, �) = π ˆ z . 

5. The value function of a firm is linear in ˆ z and ˜ z , given by V (z, �) = v 1 ̂  z + v 2 ̃  z . 

6. The constants v 1 , v 2 , π , prices r, w u,t , w s,t , growth rate g z , and aggregate production factors K t , L u and L s are jointly determined 

by a system of nonlinear equations given by Equations (35), (36), (37), (39), (40), (41), and (42), and the market clearing 

conditions. 

Proof. See Appendix A. �

3. Empirical Analysis 

3.1. Overview 

To assess whether there is any indication of misallocation of talent in innovation several different data sources are com- 

bined. Figure 2 presents a simple schema of the baseline empirical analysis. The information on the probability of becoming 

an inventor, and how well one performs conditional on becoming one is obtained from various datasets that cover the years 

1976-2008. The information on the family backgrounds comes from the IPUMS-USA 5% sample of the U.S. census conducted 

in 1930. In order to link the recent patent and inventor micro-data to the older census data, surname information is used. 

Once the links between the families and the descendants are established at the surname level, the probability of becoming 

an inventor and the productivity as an inventor conditional on becoming one are regressed on family income and education. 

It is revealed that it is income and not education that predicts a positive probability of becoming an inventor, whereas it 

is education and not income that predicts the probability of becoming a prolific inventor. This inconsistency between the 

extensive (becoming an inventor) and the intensive (productivity as an inventor) margins is the main focus of the empiri- 

cal analysis. 23 Following sections discuss the data sources in detail, describe the variables created, present and discuss the 

baseline empirical results, and conclude with some robustness checks. 

3.2. Data construction and variables 

The data sources used in the empirical analysis are discussed in Section B.1 of the empirical appendix. The summary 

statistics for the variables used are likewise presented in Table B1. The following subsections describe these variables and 

how they are generated. 

23 As will be demonstrated in Sections 4.2 and 5.2 , the proposed model with no distortions in the sorting of individuals into inventor jobs (i.e., ν = 0 in 

Equation (8) ) would result in income and education having the same relative predictive power in the probability of becoming an inventor (extensive mar- 

gin) as well as productivity conditional on becoming an inventor (intensive margin). Consequently, if there were no discrepancy in the predictive power of 

income and education in the two margins, then the calibration exercise in which the model replicates the observed normalized coefficients would conclude 

that credentialing spending is ineffective ( ν close to zero), and misallocation of talent in innovation is a quantitatively insignificant problem. Conversely, 

a large discrepancy between the two margins where income dominates in the extensive margin and education dominates in the intensive margin forces 

the estimation exercise to pick a higher value of ν ∈ [0 , 1] , which in turn implies that the mismatch between wealth and individual productivity causes 

a higher degree of misallocation of talent in innovation, in which mediocre individuals (low l) who receive high bequests (high b) can get ahead of the 

“missing Einsteins” (high l, low or zero b). Therefore, the aim of the empirical analysis is to establish whether there is a discrepancy between the two 

margins, and to check if this discrepancy is robust to many potential confounders and alterations to the reduced-form statistical model. 
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Fig. 2. Overview of the empirical analysis. Notes: This figure presents a simple schema of the baseline empirical analysis 

3.2.1. Surname level socioeconomic status variables (1930) 

Socioeconomic status variables such as income, earnings, and education are constructed at the surname level by taking 

the averages of observations in the IPUMS-USA 1930 5% sample. In this process, observations without a valid occupation are 

not included. 24 

3.2.2. Relative representation of a surname among inventors (1975-2008) 

The extensive margin analysis focuses on the question of how the socioeconomic background of an individual predicts 

the probability of becoming an inventor – or using the model’s terminology, the probability of being assigned to a job in the 

innovation sector. The Careers and Co-Authorship Networks of U.S. Patent-Holders data contains the names of all inventors 

who worked on patents granted in the U.S. between the years 1975 and 2008, from which it is possible to obtain the number 

of inventors with a particular surname. However, the fact that there are many inventors with the surname Smith does not 

mean that Smiths are more likely to become inventors by itself. In order to create a measure of the probability, the number 

of inventors with a particular surname is divided by the number of all people in the U.S. with the same surname obtained 

from Demographic Aspects of Surnames from Census 20 0 0, i.e., 

inventor probability (surname) = 

number of inventors (surname) 

number of individuals (surname) 

Relative representation of a surname among the inventor sample is then built simply by dividing the inventor probability 

associated with the surname with the unconditional probability of becoming an inventor in the U.S. given by 

relative representation (surname) = 

inventor probability (surname) 

unconditional inventor probability 

Thus a relative representation score above unity means that individuals with that surname are more likely to become in- 

ventors than the average person, and vice versa. 

3.2.3. Patent and inventor quality metrics (1975-2006) 

The intensive margin analysis considers the question of how the socioeconomic background of an individual predicts 

the productivity as an inventor conditional on becoming one. In order to conduct this analysis, it is necessary to come 

up with metrics that measure inventor productivity. The unique inventor variable allows tracking the patent portfolio of 

each inventor between the years 1975 and 2008. The productivity of an inventor can be calculated as a function of the 

24 These observations correspond to those with OCC1950 values between 980 and 999. Visit https://usa.ipums.org/usa-action/variables/OCC1950#codes _ 

section for a complete list of OCC1950 values. 
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information on all the patents he or she has worked on. This naturally leads to the question of how to assess the value 

of a patent. In line with the literature, the quality of a patent is proxied by the citations received by the patent, corrected 

for truncation bias and other concerns using the weights devised by Hall et al. (2001) . The patent quality information from 

the PDP data is linked to the inventor data using the unique patent numbers granted by USPTO. The inventor quality metric 

that is used in the baseline analysis is the total quality weighted patents of an inventor throughout his or her career. Several 

additional alternative metrics are considered in the robustness analysis in Section 3.3.3 . 

Since the data contains all inventors who worked on patents registered in the U.S., it is necessary to separate the foreign 

inventors from the sample used to create surname level variables. The address information of an inventor is available for 

every patent, and there is considerable variation between the countries. For this study, only inventors who have stayed in 

the U.S. throughout their whole career are kept. Average inventor quality metrics at the surname level are constructed by 

taking the unweighted average of individual inventor qualities. 

3.3. Empirical results 

3.3.1. Probability of Becoming an Inventor 

In order to understand whether there is a misallocation of talent in the innovation sector or not, it is necessary to 

empirically demonstrate what is correlated with the probability of having a job in this sector. The surname level probability 

of being an inventor is used as a proxy to gauge this, although inventors are not the only individuals who work in the 

innovation sector. Socioeconomic background information at the surname level obtained from IPUMS-USA 1930 dataset is 

connected to these probabilities using surnames. Population-weighted ordinary least squares estimation is used where the 

relative representation rate is regressed on the socioeconomic variables: income and education. 25 The three columns of 

Table 1 correspond to regressions on income, education, and both variables at the same time, respectively. 

Looking at the first two columns, it is observed that both income and education associated with a surname in 1930 are 

positively correlated with the relative representation among inventors between 1975 and 2008, and statistically significant. 

A standard deviation increase in income increases the relative representation rate by 23 . 9% compared to its standard devia- 

tion, while a standard deviation increase in education increases it by 2 . 90% . Given that there are roughly three generations 

between 1930 and today, these numbers are quite substantial ( 
3 
√ 

23 . 9% = 62 . 1% ), and hint towards low intergenerational mo- 

bility in social status, similar to the results in other studies that use surnames ( Clark (2014) , Olivetti and Paserman (2015) ). 

Looking at the third column tells another striking story: It is income and not education that is strongly correlated with 

the over-representation among inventors. In other words, people with surnames that were richer in the past are more likely 

to become inventors today; but controlling for income, education has no further prediction power. 26 This finding is the 

motivation behind the inclusion of the credentialing spending in the model, which enables agents to increase the probability 

of getting the inventor training necessary for innovation sector jobs by spending private resources. 

3.3.2. Productivity as an Inventor 

Having discovered that income associated with the surname is significantly positively correlated with the probability of 

being an inventor, the natural next step is to ask whether these individuals are the individuals who would make the best 

inventors. In order to investigate this question, the inventor quality metric described earlier is regressed on income and 

education. Table 2 displays the results of three OLS regressions: log inventor quality on log income, on log education, and 

on both variables at the same time. 

Due to the log-log specification, the coefficients can be interpreted as elasticities. By themselves, both income and edu- 

cation turn out to be positively correlated with inventor quality, and the associated coefficients are statistically significant. 

Once again, given that there are three generations between the samples, the elasticity estimates are considerably high. How- 

ever, this time, the significance of education is much higher than that for income, the opposite of what was observed in the 

extensive margin analysis. 

The last column regresses inventor quality on both income and education, and the results are striking. The elasticity 

of inventor quality with respect to education is very close to that in column 2, but the elasticity with respect to income 

vanishes, and is statistically insignificant. Conditional on becoming an inventor, it is the inventors with “more educated”

surnames who are the most successful in creating new path-breaking innovations. This is in direct contrast to the exten- 

sive margin results, and suggests that the individuals who would make the best inventors might not be the same as those 

the society allocates as inventors. This fact is captured in the model by three ingredients: (i) education increases individual 

productivity in the innovation sector, (ii) education and innate ability are complementary in determining individual produc- 

tivity, (iii) credentialing spending increases the probability of getting in an innovation sector job, but it does not increase 

individual productivity compared to other inventors (as opposed to education, which does both). 

25 Since all variables are averages calculated at the surname level, if an observation was created for each individual in the Census 20 0 0 sample with an 

indicator variable for being an inventor or not, the unweighted OLS regression of this indicator variable on background information linked by surnames 

would yield the exact same coefficients as Table 1 . 
26 The insignificance of education is not driven by multicollinearity due to high correlation between the variables. In order to address such concerns, a 

variance inflation factor test is conducted after each regression in the paper in which both income and education are included as regressors. None of the 

tests result in a VIF large enough for concern (uniformly < 3 ). Results are available upon request. 
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Table 1 

Probability of Becoming an Inventor (Extensive Margin) – Baseline 

relative relative relative 

representation representation representation 

(1975-2008) (1975-2008) (1975-2008) 

income (1930) . 239 ∗∗∗ . 239 ∗∗∗

(.010) (.010) 

education (1930) . 029 ∗∗∗ .001 

(.006) (.005) 

Obs. 110,290 110,290 110,290 

R 2 0.27 0.23 0.27 

Notes: Robust standard errors in parentheses. Dominant race fixed effects are in- 

cluded the coefficients of which are suppressed for brevity. All variables are normal- 

ized by subtracting the mean and dividing by the standard deviation. Observations 

are weighted by the share of the surname in the general population obtained from 

the U.S. decennial census of population (20 0 0). ∗ , ∗∗ and ∗∗∗ denote significance at 

10, 5 and 1% levels respectively. 

Table 2 

Productivity as an Inventor (Intensive Margin) – Baseline 

log quality wtd. log quality wtd. log quality wtd. 

total patents total patents total patents 

(1975-2006) (1975-2006) (1975-2006) 

log income (1930) . 066 ∗∗∗ .001 

(.009) (.009) 

log education (1930) . 176 ∗∗∗ . 175 ∗∗∗

(.008) (.009) 

Obs. 81,348 81,348 81,348 

R 2 0.03 0.05 0.05 

Notes: Robust standard errors in parentheses. Dominant race fixed effects are included the 

coefficients of which are suppressed for brevity. All variables are normalized by subtracting 

the mean and dividing by the standard deviation. Observations are weighted by the share of 

the surname in the general population obtained from the U.S. decennial census of population 

(20 0 0). ∗ , ∗∗ and ∗∗∗ denote significance at 10, 5 and 1% levels respectively. 

Table 3 

Productivity as an Inventor (Intensive Margin) – Alternative Measures 

log avg. patent log max. patent log total patents log total patents 

quality quality (renewed thrice) (top 10% only) 

(1975-2006) (1975-2006) (1975-2006) (1975-2006) 

log income (1930) . 0 0 0 . 013 ∗ . 031 ∗∗∗ . 033 ∗∗∗

(.008) (.008) (.009) (.008) 

log education (1930) . 130 ∗∗∗ . 142 ∗∗∗ . 098 ∗∗∗ . 085 ∗∗∗

(.008) (.008) (.008) (.008) 

Obs. 81,348 81,348 78,438 81,348 

R 2 0.02 0.04 0.05 0.03 

Notes: See notes for Table 2 . 

3.3.3. Alternative inventor quality measures 

In the baseline intensive margin analysis, quality weighted total patents of an inventor was used as the inventor quality 

metric, where patent quality was measured by the citations a patent receives. This section establishes that the results are 

robust to using different measures of inventor quality. Results pertaining to additional alternative measures can be found in 

Table B.2 in the empirical appendix. 

Table 3 replicates the regression in column 3 of Table 2 using different inventor quality metrics. 27 The first two columns 

preserve the same patent quality metric (citations), but consider the average and maximum patent quality for inventors 

respectively. Compared to the baseline measure, the average patent quality measure puts less weight on inventors who come 

up with a high number of innovations which are of mediocre quality. Similarly, the maximum patent quality measure only 

considers the best invention of a given inventor, comparing inventors according to the best ideas they came up with and 

ignoring everything else. The results are very similar to the baseline analysis: log education dominates in both regressions, 

and log income is either statistically insignificant (column 1), or significant at the 10% level and economically insignificant 

(column 2). 

27 The results for replicating columns 1 and 2 are also very similar, but not reported for brevity. 
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Table 4 

Immigration Robustness (1930-20 0 0) – Becoming an Inventor (Extensive Margin) 

relative representation (1975-2008) 

(1) (2) (3) (4) (5) 

income (1930) . 341 ∗∗∗ . 249 ∗∗∗ . 232 ∗∗∗ . 158 ∗∗∗ . 239 ∗∗∗

(.009) (.011) (.013) (.006) (.010) 

education (1930) −0 . 021 ∗∗∗ .003 . 005 −. 002 .001 

(.004) (.005) (.006) (.004) (.005) 

pop. share (20 0 0) / pop. share (1930) −. 025 

(.032) 

Obs. 82,718 82,735 55,148 55,210 110,290 

R 2 0.13 0.30 0.34 0.04 0.27 

Notes: Columns 1 and 2 repeat the regression in the last column of Table 1 after dropping the 

top and bottom 25% of the sample according to population share ratio respectively. Columns 3 and 

4 repeat the same exercise for the top and bottom halves of the sample respectively. Column 5 

repeats the same regression with the whole sample while introducing the population share ratio 

linearly as a regressor in addition to income and education. All notes for Table 1 apply. 

In column 3, a new patent quality metric is introduced: patent renewal status. USPTO requires patent holders to renew 

their patents 4, 8, and 12 years after the patent grant date by paying a small fee. If the patent holders do not renew their 

patents on these dates, they lose the monopoly rights on their invention. There is significant variation in how many times 

patents are renewed. The patent quality metric used in column 3 assigns a quality of 1 if the patent was renewed three 

times throughout its duration, and 0 otherwise. Hence only patents which were seen sufficiently valuable by their holders 

to renew three times are counted. 28 The results with this metric are similar in that education dominates income, but this 

time the effect of income is not statistically insignificant. 

Last column does the opposite, and focuses on a patent quality measure that only puts weight on the best inventions 

produced in a year. For each year, the patents are ranked according to the citations they receive. Only the top 10% of the 

inventions in a given year are assigned a quality of 1, whereas the remaining 90% are assigned a quality of 0. Using the 

inventor quality measure derived from this new measure of patent quality, the results are similar to column 3: education is 

found to dominate income once again. 

3.3.4. Controlling for demographic changes and immigration between samples 

The Unites States is a country of immigrants, and it has received significant immigration during the time period from 

1930 to 2008. Many surnames that were very rare in the 1930s are now quite common. In contrast, some surnames are 

now less frequent, either due to being crowded out by the new or existing surnames, or due to low number of offspring or 

higher mortality rates. Could any of these demographic changes bias the obtained estimates in a particular direction, poten- 

tially causing wrong conclusions to be drawn? Recognizing this possible problem, this section is dedicated to investigating 

whether this is true. 

In order to tackle this issue, a simple variable called population share ratio is constructed. The share of a surname in the 

population in 20 0 0 is divided by that in 1930. This ratio is larger than unity if the surname has increased in frequency, which 

is the case for many immigrant surnames. Conversely, it is smaller than unity for surnames which lost their prominence 

over time. Using this ratio as an additional explanatory variable, Table 4 repeats the extensive margin regression in column 

3 of Table 1 . Columns 1 and 2 repeat the regression after dropping the top and bottom 25% of the sample according to 

the population share ratio. Hence they drop the highly over- and under-achieving surnames from the sample respectively. 

Columns 3 and 4 repeat the same exercise keeping only the top and bottom halves of the sample respectively, i.e., looking at 

over- and under-achievers within their own groups. The last column retains the whole sample, but includes the population 

share ratio as a linear regressor. Although the magnitudes change, income is found to be dominant in all cases, whereas 

education is found to be either insignificant, or significant but negatively correlated. In addition, when included as a linear 

regressor, the population share ratio turns out to be insignificant. Consequently, the findings of the extensive margin analysis 

are found to be robust. 

Table 5 repeats the same analysis done in Table 4 for column 3 of Table 2 . The results are quite similar: Although 

the exact quantitative magnitudes may vary, the effect of education is always quite large and positive, dominating that of 

income. The effect of income is found to be statistically insignificant in all cases except one, where the coefficient is only 

3.7% (column 4). When the population share ratio itself is added as a linear regressor (column 5), its coefficient turns out 

to be significant at the 5% level and positive. However, estimated at 1.6%, its predictive power is much smaller compared to 

that of education (17.7%), indicating that individuals with surnames that became more prominent over time are more likely 

28 Note that although this quality metric is very reliable in weeding out patents that turn out to be worthless over time, it provides no quality varia- 

tion between patents which are sufficiently valuable to be renewed every single time. Hence it should be thought of as a quality measure that is more 

informative in the lower tail of the patent quality distribution as opposed to the upper tail. 
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Table 5 

Immigration Robustness (1930-20 0 0) – Productivity as an Inventor (Intensive Margin) 

log quality wtd. total patents (1975-2006) 

(1) (2) (3) (4) (5) 

log income (1930) −. 015 ∗ .011 .011 . 037 ∗∗∗ .001 

(.009) (.010) (.012) (.008) (.009) 

log education (1930) . 162 ∗∗∗ . 173 ∗∗∗ . 177 ∗∗∗ . 145 ∗∗∗ . 177 ∗∗∗

(.006) (.010) (.012) (.008) (.009) 

pop. share (20 0 0) / pop. share (1930) . 016 ∗∗

(.032) 

Obs. 61,013 61,011 40,684 40,676 81,348 

R 2 0.03 0.06 0.07 0.03 0.05 

Notes: Columns 1 and 2 repeat the regression in the last column of Table 2 after dropping the 

top and bottom 25% of the sample according to population share ratio respectively. Columns 

3 and 4 repeat the same exercise for the top and bottom halves of the sample respectively. 

Column 5 repeats the same regression with the whole sample while introducing the population 

share ratio linearly as a regressor in addition to income and education. All notes for Table 2 

apply. 

to be prolific inventors, although the predictive power is much less than that of education associated with the surname. 

Hence, it is once again concluded that the findings in the intensive margin analysis are robust. 

One could also be worried about another issue: It is possible that a surname the frequency of which is stable over the 

1930-2008 time period actually belonged to people who were recent immigrants in 1930. Systematic differences between 

such surnames and those that were already largely stable in frequency prior to 1930 could lead to potential biases similar 

to those discussed earlier. Luckily, it is possible to construct a similar population share ratio using surname frequencies in 

1930 and 1880, relying on an earlier IPUMS-USA sample. The cost of doing so is losing observations that belong to surnames 

which do not exist in the 1880 census sample. The results of this robustness analysis are qualitatively very similar, and can 

be found in Tables B3 and B4 in the empirical appendix. 

3.3.5. Further robustness checks 

The results of further robustness checks can be found in the empirical appendix. Tables B5 and B6 replicate the baseline 

regressions using information derived from males alone, whereas Tables B7 and B8 do the same for females; and the results 

are found to be stronger for males, likely due to their overrepresentation in the inventor data. 29 Tables B9 and B10 introduce 

additional family background variables as controls (household size, literacy rate, non-native origin). Table B11 replicates 

the extensive margin analysis while restricting the sample to that of the intensive margin analysis (i.e., surnames with 

at least 1 inventor or more). Table B12 investigates the impact of surname rarity, and replicates the baseline regressions 

with no weights, with frequent surnames removed, and weighted by the inverse of the standard deviation in income and 

education (geometric average). Tables B13 and B14 replicate the baseline regressions while restricting attention to the early 

part of the inventor sample (1975-1995 instead of 1975-2006). Tables B15 and B16 replicate the baseline regressions with 

dominant ethnicity fixed effects in addition to dominant race fixed effects, where surnames not matched to an ethnicity are 

dropped. Tables B17 and B18 do the same without dropping the surnames not matched to an ethnicity. The results remain 

qualitatively very similar in all listed specifications. 

3.3.6. Summary of empirical results 

The two stylized facts obtained in the empirical analysis can be summarized as follows: 

Fact 1: Individuals from richer backgrounds are much more likely to become inventors (23.9%), whereas those from more 

educated backgrounds experience no similar advantage (0.1%). 

Fact 2: Conditional on becoming an inventor, individuals from more educated backgrounds turn out to be much more 

prolific inventors (17.5%), whereas those from richer backgrounds exhibit no such aptitude (0.1%). 

However, these results by themselves would be insufficient to establish whether there is an economically significant 

misallocation of talent or not, given that innate ability is unobserved in the data. This is important, since (i) innate ability 

is likely to play a large role in determining the probability of becoming an inventor as well as success conditional on 

becoming one, (ii) innate ability is found to be very persistent across generations by other studies ( Clark (2014) , Olivetti 

and Paserman (2015) ), and this might be causing the observed strong positive correlations. In order to measure the extent 

of the misallocation of talent in innovation, the model developed in Section 2 is employed, where the regressions run here 

are replicated within the model, targeting the empirical coefficient estimates. The next section describes this calibration 

exercise. 

29 Information on gender is readily available in the 1930 census. Direct information on gender is unavailable in the inventor data, and is proxied by the 

dominant gender associated with first names of the inventors. 
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Table 6 

Parameter Values 

Parameter Description Identification 

External Calibration 

ω = 2 . 00 CRRA parameter Kaplow (2005) 

α = 0 . 50 Parental altruism Aiyagari et al. (2002) 

κ = 0 . 25 Capital’s share in production Corrado et al. (2009) 

λ = 0 . 60 Labor’s share in production Corrado et al. (2009) 

δ = 0 . 82 Depreciation rate U.S. NIPA 

ξ = 0 . 50 Concavity of innovation production Hall and Ziedonis (2001) 

σa = 0 . 70 St. dev. of innate ability shock Knowles (1999) 

η = 11 . 6% Fraction of skilled jobs U.S. Census Bureau (2013) 

Internal Calibration 

β = 0 . 28 Discount factor Real interest rate 

� = 0 . 92 Innovation productivity increase GDP growth rate 

ρ = 0 . 70 Persistence of innate ability IG corr. of earnings 

κh = 0 . 04 Cost of pre-college education investment Education spending/GDP 

κn = 0 . 05 Cost of credentialing investment Inequality targets 

ξh = 1 . 30 Convexity of pre-college education inv. Inequality targets 

ξn = 2 . 50 Convexity of credentialing inv. Inequality targets 

ψ = 0 . 40 Education share of ind. productivity Regression targets 

ε = 1 . 90 Ind. productivity elasticity Regression targets 

ν = 0 . 89 Influence of credentialing spending Regression targets 

σ j = 0 . 80 St. dev. of job shock Regression targets 

Notes: All internally calibrated parameters are identified jointly. The moments in the in- 

ternal calibration panel are provided for intuition. 

4. Calibration 

4.1. Solution method 

Computation of a balanced growth path equilibrium requires value function iteration to solve for 

V o (y o , h, a ;�) , V c (b, h, a ;�) and V y (y y , a ;�) and the associated policy functions ˆ b (y o , h, a ;�) , ˆ n (b, h, a ;�) , ̂  h (y y , a ;�) 

and ˆ s (y y , a ;�) . Simulation of the joint stationary distribution of jobs, innate ability, and pre-college education as well as 

the stationary distribution of normalized savings are necessary to calculate the aggregate supplies as well as the cut-off

score threshold s̄ . The results of the firm’s maximization problem and the market clearing conditions boil down to analytical 

non-linear equations in K, L u and L s as discussed in Section 2 . Then, these are solved to obtain the balanced growth path 

equilibrium. The pseudo-code for the algorithm used to solve for the BGP equilibrium can be found in Appendix A. 

4.2. Identification 

The simulation of the model requires the assignment of values to several parameters. There are nineteen parameters to 

pick: β, ω, α, κ, λ, δ, �, ξ , ψ, ε, ρ, ν, σa , η, κh , ξh , κn , ξn , σ j . 
30 In order to select values for the parameters, a set of empirical 

targets are specified for the model to match. Some common parameters are chosen from existing studies, and the rest 

are internally calibrated by employing a minimization routine that seeks to match the data targets with the associated 

model-generated counterparts. In particular, some of the regressions found on Section 3 are replicated in the model, and 

the minimization algorithm attempts to achieve the same standardized coefficients (“betas”) with regressions run on model- 

simulated data, where the variables are normalized in the same manner. A summary of the calibration exercise is presented 

in Table 6 . The details are as follows: 

1. CRRA parameter: This parameter is taken to be ω = 2 . 00 , consistent with the estimates listed in Kaplow (2005) , delivering 

an elasticity of intertemporal substitution of 0.50. 

2. Parental altruism parameter: This variable is chosen to be α = 0 . 50 , following Aiyagari et al. (2002) . 

3. Capital’s and labor’s share of income: Corrado et al. (2009) calculate the shares of tangible capital, labor, and intangible 

capital to be κ = 0 . 25 , λ = 0 . 60 and ζ = 0 . 15 respectively. The share of intangible capital they calculate is mapped to the 

share of productivity of a firm in generating output in the model. 

4. Depreciation rate for capital: The annual depreciation rate of physical capital is chosen as 6 . 9% which is consistent with 

the U.S. National Income and Product Accounts. Since each period lasts 25 years, δ = 0 . 82 . 

5. Concavity of innovation production: Following Hall and Ziedonis (2001) , the concavity parameter of the innovation pro- 

duction function is chosen as ξ = 0 . 50 . This is the most widely used value in the literature. 

30 The parameter � is defined as � ≡ γχ . It is not possible to separately identify χ (efficiency in generating a higher innovation probability using skilled 

labor) and γ (productivity gain conditional on a successful innovation); so, � is estimated instead. 
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Table 7 

Calibration Targets 

Target U.S. Data Model 

Aggregate targets 

Yearly real interest rate 4.00% 4.00% 

Yearly GDP growth rate 2.00% 2.00% 

Education spending/GDP 7.30% 8.55% 

Intergenerational correlation targets 

IG corr. of earnings 0.70 0.70 

IG corr. of wealth 0.37 0.33 

Inequality targets 

Wage income Gini index 0.48 0.52 

Log 90/10 ratio 1.08 1.17 

Log 90/50 ratio 0.46 0.52 

Log 50/10 ratio 0.62 0.65 

Regression targets 

Becoming an inventor, income effect 0.24 0.19 

Becoming an inventor, education effect 0.00 0.07 

Productivity as an inventor, income effect 0.00 0.08 

Productivity as an inventor, education effect 0.18 0.22 

Notes: This table presents the targeted data moments and the model 

counterparts. 

6. Standard deviation of innate ability shock: This parameter is chosen to be σa = 0 . 70 , in line with findings on empirical 

income distributions reported in Knowles (1999) . 

7. Fraction of skilled jobs: This parameter is chosen such that it equals the percentage of individuals in the U.S. with graduate 

degrees, which is 11 . 6% ( U.S. Census Bureau, 2013 ). 

8. Long-run interest rate: The long-run interest rate of 4 . 0% is targeted, which determines the discount factor β . 

9. Long-run output growth: Since 1945, the the aggregate output in the U.S. grew at circa 2% per year. The parameter �

determines the increase in productivity a given amount of innovation spending generates, and hence it plays the foremost 

role in determining the output growth rate in the model. 

10. The ratio of education spending to GDP: The ratio of the aggregate spending on education to GDP in the U.S. is around 

7.30% ( OECD, 2013 ).The model counterpart of this ratio is the aggregate resources spent on education over total output. 31 

11. Intergenerational correlation of earnings: The persistence of earnings across generations is an important statistic for the 

model to replicate, since it puts discipline on the persistence of innate ability which is unobserved. The value of 70% is 

targeted in the baseline analysis ( Knowles (1999) ). 32 

12. Intergenerational correlation of wealth: The persistence of wealth across generations is also an important statistic to repli- 

cate, since the mechanism that generates the misallocation of talent in the model works through the wealth inequal- 

ity between households, and its intergenerational transmission. This value is estimated to be 37% in Charles and Hurst 

(2003) . 

13. Inequality targets: The calibration procedure aims to generate a realistic income distribution. To this end, various inequal- 

ity metrics are calculated using the model-generated distribution, and matched with their empirical counterparts. These 

are the Gini index, and log 90/10, 90/50 and 50/10 ratios. 33 

14. Indirect inference: The baseline extensive (becoming an inventor) and intensive (productivity as an inventor) margin re- 

gressions in Section 3 are replicated in the model. Income is proxied by the income of the agents in the model, and 

education is proxied by pre-college education. Relative representation among inventors in the data is mapped to relative 

representation in the innovation sector jobs. Inventor quality in the data is mapped to individual productivity condi- 

tional on having an innovation job. As in the empirical analysis, all variables are normalized by subtracting the mean 

and dividing by the standard deviation. Likewise, the model simulation assumes the same generational gap (3 genera- 

tions) between ancestors and descendants as in the empirical analysis. The coefficients of income and education in both 

margins are then targeted. 

The success of the calibration exercise in matching the data targets is presented in Table 7 . The interest rate and the yearly 

GDP growth rate are hit very precisely, and they determine the values of β and � respectively. The model generates an 

education spending to GDP ratio somewhat higher than what is observed in the U.S. data. Given that the number taken 

from the data does not include the opportunity cost of time spent by parents in order to nurture their children, overshooting 

might not be a significant problem. 

31 Credentialing spending is not included in the model counterpart since it is not included in the calculations from OECD (2013) either. 
32 Since there are also estimates of intergenerational correlation of earnings as low as 40% in the literature, the model is re-estimated with a lower target 

as a robustness check in Section 5.5 . 
33 Note that one of these three ratios is a deterministic function of the other two; so it provides no additional information. All three are reported for 

clarity. 
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Fig. 3. Changes in Income and Education Effects with Varying Values of ν . Notes: This figure plots the effects of income (red) and education (blue) while 

varying the influence of credentialing spending ν in the range of values it can take ( ν ∈ [0 , 1] ). The left panel plots the effects on the extensive margin, 

and the right panel plots the same on the intensive margin. 

The intergenerational correlation of earnings is hit precisely, which disciplines the persistence of (unobserved) innate 

ability ρ (positively related), but is also influenced by the standard deviation of the idiosyncratic job shock σ j (negatively 

related). The intergenerational correlation of wealth the model produces is 0.33, which is somewhat lower than the value 

of 0.37 observed in the data, but still within a reasonable range. 

The model generates a wage income distribution slightly more unequal compared to the U.S. economy. For instance, the 

Gini index is calculated to be 0.52 as opposed to 0.48 observed in the data. However, the remaining inequality targets that 

measure the inequality in different sections of the distribution show that the model is successful in matching the shape. 

Log 90/10, log 90/50 and log 50/10 ratios are all slightly higher than their data counterparts by similar percentages. 

The model is able to replicate the dominance of income on the extensive margin (the probability of getting an innovation 

sector job) and the dominance of education on the intensive margin (observed productivity as an inventor conditional on 

becoming one). The coefficients of the dominated effects (education on the extensive margin, and income on the intensive 

margin) are not precisely zero, so the starkness of the differences are more similar to those observed in the regressions in 

Columns 3 and 4 of Table 3 , as opposed to that in Column 3 of Table 2 on the intensive margin. 

Generating the discrepancy between the effects of income and education on the two margins is made possible by the 

credentialing spending channel. Figure 3 plots the effects of income (red) and education (blue) while varying the influence 

of credentialing spending ν in the range of values it can take ( ν ∈ [0 , 1] ). The left panel plots the effects on the extensive 

margin, and the right panel plots the same on the intensive margin. As ν increases from 0 to 1, the predictive power of 

ancestor income on the probability of becoming an inventor increases, whereas that of education decreases. On the other 

hand, increasing ν from 0 to 1 does not change the predictive power of ancestor income and education in opposite direc- 

tions, slightly increasing both at the same time. 34 This makes it possible to change the value of ν such that the dominance 

pattern observed in the data can be hit in the model generated regressions. This differential effect of ν on the two margins 

provides the intuition on how targeting the dominance pattern helps pin down its value. 35 

5. Quantitative Results 

In this section, using the parameter values estimated in Section 4 , several quantitative experiments are conducted to 

better understand the mechanism of the model, to assess the welfare costs associated with the misallocation of talent due 

to the credentialing spending channel, and to determine socially optimal progressive bequest tax schedules. 

34 Whether income or education dominates on the intensive margin (i.e. inventor productivity) is determined by other parameters of the model. The 

model is able to generate any correlation pattern, including the exact opposite of the empirically observed pattern of dominance, by changing the parameter 

values. 
35 One could be worried about whether other parameters that play a part in the determination of the individual score could generate a similar differential 

effect on the two margins. The prime candidates are the elasticity of substitution between innate ability and pre-college education ε, and the share of 

education in individual productivity ψ . It is found out that this is not the case. In particular, if the credentialing spending channel is shut down ( ν = 0 ), 

both ε and ψ change the effects of income and education in the same direction on both margins at the same time. Therefore, if the credentialing spending 

channel is removed from the model without introducing any other mechanisms, the model is unable to replicate the domination patterns observed in the 

data. ψ itself is identified by matching the relative ratio of the income and education coefficients (a higher share of pre-college education in individual 

productivity l makes innate ability a matter less, and wealth matter more, increasing the relative ratio on both margins). ε itself is identified by matching 

the combined magnitude of all coefficients (higher substitutability between pre-college education h and innate ability a reduces the impact of innate 

ability’s high persistence, makes individual productivity l less persistent, and therefore lowers both coefficients in both regressions). 
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The first subsection describes the social welfare function used in the study, and how two different stationary economies 

are compared against each other. The following subsection conducts a hypothetical thought experiment where the creden- 

tialing spending channel is completely shut down, which results in an increase in the aggregate output growth rate as well 

as social welfare through a reduction in the misallocation of talent. 

The third subsection focuses on how a benevolent government can increase social welfare and economic growth in a 

decentralized market economy through the policy tool of progressive bequest taxation. Although the increase in aggregate 

growth is found to be around 25% of what can be achieved by shutting down the credentialing spending channel, the 

welfare increase is found to be larger and quite significant at 6.20% in consumption-equivalent terms. The fourth subsection 

investigates whether subsidies to pre-college education alongside progressive bequest taxation can improve welfare further, 

and concludes that a mild linear tax rather than a subsidy is optimal instead. 

In Section 5.5 , the model is recalibrated with a lower intergenerational correlation of earnings target of 0.45 in order 

to check whether the model generates similar quantitative implications. Repeating the credentialing spending shut-down 

experiment with the new calibration amplifies the growth and welfare effects further, however the increase in magnitudes 

is not too large. 

5.1. Welfare comparisons 

In order to measure welfare, an egalitarian utilitarian social welfare function is employed where each household is 

weighed equally. The social planner is assumed to assign equal value to the utility from consumption of all members of 

a household at a given time. The utility in the future is discounted by the discount factor β of the household. Hence, the 

social welfare function in a balanced growth path equilibrium with output growth rate g is given by 

W = 

∞ ∑ 

t=0 

βt 

∫ 1 

m =0 

(
c 1 −ω 

c,m,t 

1 − ω 

+ 

c 1 −ω 
y,m,t−1 

1 − ω 

+ 

c 1 −ω 
o,m,t−2 

1 − ω 

)
dm 

= 

∫ 1 
m =0 

(
c 1 −ω 

c,m, 0 
+ c 1 −ω 

y,m, −1 
+ c 1 −ω 

o,m, −2 

)
dm 

(1 − ω)(1 − β(1 + g) 1 −ω ) 
(28) 

The welfare comparisons between different economies are conducted by comparing the balanced growth path equilibria. 36 In 

order to make two different economies A and B comparable, both economies are started at the same aggregate productivity 

level z̄ A 0 = z̄ B 0 = 1 . Let ν > 0 be the scalar such that multiplying every agent’s consumption in economy A with ν results in a 

welfare number equivalent to the one in economy B . Simple algebra reveals that ν is given by 

ν = (W 

B /W 

A ) 1 / (1 −ω) (29) 

where W 

A and W 

B denote the welfare in economies A and B respectively. The welfare gain or loss a move from economy 

A to economy B provides in consumption-equivalent terms is given by ν − 1 . This welfare change measure is used in all 

quantitative exercises. 

5.2. Shutting down the credentialing spending channel 

How does the misallocation of talent affect economic growth and social welfare? In order to address this question, a sim- 

ple hypothetical thought experiment will be conducted. Recall that individuals heterogeneous in innate ability, pre-college 

education and wealth are able to receive inventor training if they can achieve a high enough score given by 

˜ s (l(h, a ) , n ) = (1 − ν) l(h, a ) + νn + ε j . (30) 

The score of an individual is partially influenced by the actual individual productivity l(h, a ) , partially by the credentialing 

spending n , and partially by the random shock ε j . Given the scarcity of inventor training, increasing the growth rate of 

the economy is only possible through improving the composition of the individuals who get inventor training in terms 

of individual productivity. If the influence of credentialing spending could be diminished such that ν = 0 , the scores of 

the individuals would be perfectly correlated with their actual individual productivity except for the random shock. This 

would result in highly talented individuals ending up in the innovation sector, where they can contribute to the aggregate 

productivity growth. Following this line of thought, the economy calibrated in Section 4 is taken, and the parameter ν is set 

to 0. This hypothetical economy is then compared to the baseline economy. 

Table 8 displays the values of several statistics of interest in the baseline and hypothetical economies and how much 

they change in percentage terms. The first four rows display how the effects of income and education in the extensive 

and intensive margins change. In the baseline economy, income effect dominated in the determination of the chances of 

getting an innovation job, whereas education effect dominated in the prediction of productivity conditional on becoming 

36 Hence this analysis ignores the welfare effects of the transition to the new steady state. However, including the effects of the transition would amplify, 

rather than diminish, the calculated welfare numbers, since the steady-state capital stock is lower in the counterfactual economies considered, which would 

allow the consumption of the extra capital stock in the transition to the stationary equilibrium. 
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Table 8 

Shutting down the credentialing spending channel 

Variable Baseline ν = 0 Change 

Becoming an inventor, income effect 0.19 0.05 -73.7% 

Becoming an inventor, education effect 0.07 0.15 114% 

Productivity as an inventor, income effect 0.08 0.06 -25.0% 

Productivity as an inventor, education effect 0.22 0.20 -9.09% 

Yearly GDP growth rate 2.00% 2.21% 10.4% 

Education spending/GDP 8.55% 10.2% 19.1% 

Aggregate skilled labor, L s 0.48 0.62 28.4% 

Aggregate unskilled labor, L u 1.91 2.00 4.69% 

Mean innate ability of skilled workers, a 2.08 2.57 23.4% 

Mean pre-college education of skilled workers, h 2.27 2.96 30.1% 

Mean parental wealth of skilled workers, y o 0.87 0.84 -4.32% 

Mean bequests received of skilled workers, b 0.49 0.25 -49.5% 

Wage income Gini index 0.52 0.56 6.61% 

Log 90/10 ratio 1.17 1.20 3.10% 

Log 90/50 ratio 0.52 0.57 9.30% 

Log 50/10 ratio 0.65 0.64 -1.88% 

Notes: This table displays how statistics of interest change as a result of shutting down 

the credentialing spending channel. 

an inventor. Now that the credentialing channel has been shut down, education effect dominates in both the extensive and 

intensive margins. Thus, the people who would perform better as inventors and those who actually become inventors largely 

coincide. 

The annual GDP growth rate changes from 2.00% to 2.21%, a large increase. This is caused by a 28.4% increase in the ag- 

gregate skilled labor supply L s . Investigating the changes in the characteristics of the people who become inventors reveals 

that this is driven by higher quality individuals in terms of both innate ability and pre-college education. The mean innate 

ability a of inventors increases by 23.4%, indicating a better allocation of naturally talented individuals to where their con- 

tribution would be the greatest. Furthermore, these individuals also receive more pre-college education investment when 

they are children, further increasing the average individual productivity of inventors. 

Looking at the parental backgrounds of the inventors, it is observed that the mean parental wealth is slightly lower by 

-4.32%. However the mean bequests received fall tremendously by 49.5%. This is driven by two effects working in the same 

direction: (1) since ν = 0 , it is no longer possible for less talented children with wealthier parents to outperform the more 

talented but less wealthy competitors in score by outspending them in credentialing, (2) given that their children do not 

need to spend any money on credentialing, parents do not deem it necessary to leave large bequests, spending some of the 

extra windfall for their own consumption, and the rest on the productive pre-college education investment which improves 

individual productivity l and score ˜ s simultaneously. 

The inequality measures tell a different story: The decrease in the misallocation of talent is beneficial for economic 

growth, but it also leads to a more unequal society in terms of income. The Gini index increases from 0.52 to 0.57. Examining 

the income ratios is more revealing: Log 90/10 ratio increases by 3.10%, exhibiting an increase in the gap between the rich 

and the poor. However log 90/50 ratio increases at a much higher rate of 9.30%, whereas log 50/10 ratio decreases by 1.88%. 

These results indicate that the increase in inequality is largely driven by the upper tail of the income distribution. As more 

naturally talented individuals have better chances at becoming inventors, they are also able to earn higher incomes, drifting 

away from the rest of the workers. 

As a combined result of all of these changes, the welfare in the hypothetical economy is 5.93% higher than the baseline 

economy in consumption-equivalent terms. However, it is important to keep in mind that the hypothetical economy is still 

far away from the first best. Although the misallocation of talent in the college education stage is reduced to the effect of 

the randomness inherent in the allocation process alone, the pre-college education investment in children is still a function 

of parental wealth. Thus, there is still room for improvement. In addition, the egalitarian social welfare function assigns 

importance to equalizing outcomes between households in terms of consumption, so holding everything constant, there are 

also potential gains from redistribution of resources. The following subsection discusses a potential government policy which 

can address a combination of the listed concerns simultaneously. 

5.3. Progressive bequest taxation 

The previous thought experiment shows that reducing the misallocation of talent in the economy by shutting down the 

credentialing spending channel can lead to significant gains in growth and welfare. Can a benevolent government achieve 

similar gains by utilizing available policy options in a decentralized economy? To this end, socially optimal progressive 

bequest taxes will now considered. 

In order to reduce the cost of computation, a particular functional form is assumed with the scale parameter τs 

and the progressivity parameter τp such that the budget constraint of the old adults in the decision problem given in 
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Table 9 

Optimal progressive bequest taxation results 

Variable Baseline Optimal b tax Change 

Becoming an inventor, income effect 0.19 0.17 -10.5% 

Becoming an inventor, education effect 0.07 0.08 14.3% 

Productivity as an inventor, income effect 0.08 0.02 -75.0% 

Productivity as an inventor, education effect 0.22 0.27 22.7% 

Yearly GDP growth rate 2.00% 2.05% 2.50% 

Education spending/GDP 8.55% 9.13% 6.85% 

Aggregate skilled labor, L s 0.48 0.51 6.29% 

Aggregate unskilled labor, L u 1.91 1.93 0.94% 

Mean innate ability of skilled workers, a 2.08 2.15 3.33% 

Mean pre-college education of skilled workers, h 2.27 2.47 8.90% 

Mean parental wealth of skilled workers, y o 0.87 0.85 -3.05% 

Mean bequests received of skilled workers, b 0.49 0.43 -10.6% 

Wage income Gini index 0.52 0.53 1.92% 

Log 90/10 ratio 1.17 1.17 0.54% 

Log 90/50 ratio 0.52 0.52 0.00% 

Log 50/10 ratio 0.65 0.66 0.01% 

Notes: This table displays how statistics of interest change under optimal progressive bequest 

taxation. 

Equation (12) becomes 

c o + 

(
b 

1 − τs 

) 1 
1 −τp 

≤ y o (31) 

which is equivalent to the old budget constraint if τs = τp = 0 . All the collected taxes are then transferred to the young 

adults as a type-independent lump-sum transfer T r, changing the equation that determines y y in Equation (14) to 

y y = 

(
w j y + 

w 

′ 
j y 

1 + r ′ 

)
l y (h y , a y ) + b − c n (n ) + T r. (32) 

In order to prevent lump-sum taxes, T r ≥ 0 is imposed, and the government must balance its budget every period. 

The welfare maximizing values of τs and τp are found to be 0.125 and 0.171 respectively. The bequest tax schedule 

implied by these two values is quite progressive: The average bequest tax rate faced by the top 1% is 12.1%, whereas this 

number falls to 9.70% for the top 5%, and 4.18% for the top 10%. In fact, when the transfers are also taken into account, 

the bottom 95% of the households are net recipients, whereas only the top 5% pay into the system. Furthermore, as it 

will be demonstrated later on, this progressive taxation scheme does not result in a less productive society: the aggregate 

productivity of the inventors and the growth rate of output are higher in this alternative economy. Hence the increased 

equity does not come at the cost of reducing efficiency. 

Table 9 shows how the statistics of interest change compared to the baseline under the optimal progressive bequest 

taxation policy. Looking at the regression targets, and the extensive margin in particular, income loses its explanatory power 

by 10.5% of its value, whereas that of education increases by 14.3%. The effects on the intensive margin are much more 

pronounced, where income loses 75% of its explanatory power, and education completely dominates. All of these results 

point towards a decrease in the misallocation of talent. 

The growth rate of the economy increases to 2.05% from its baseline value of 2.00%, which corresponds to one quarter 

of the effect observed in the case of shutting down credentialing spending ( ν = 0 ). This is caused by the increase in the 

aggregate skilled labor supply L s by 6.29% of its value. Examining the mean innate ability a and pre-college education h 

of inventors, the increase of quality in the composition is driven more by pre-college education (8.90%) rather than innate 

ability (3.33%). So it can be argued that the optimal bequest taxes contribute to the growth rate of the economy more 

through reducing the suboptimal investment in pre-college education rather than allocating higher innate ability people to 

the innovation sector. However, both channels have a positive contribution regardless of their relative power. 

In contrast to the thought experiment where credentialing spending is shut down, the increase in the growth rate of 

the economy is not accompanied by a significant increase in income inequality. The inequality metrics under the optimal 

taxation policy have very similar values to their baseline values. This is caused by the redistributive nature of the optimal 

tax policy. As a result of this, even though the growth gain is one quarter of the ν = 0 case, the welfare gain is calculated 

to be slightly higher: 6.20% in consumption-equivalent terms. 

5.4. Subsidizing or taxing pre-college education spending 

The preceding thought experiment establishes that progressive bequest taxation can simultaneusly improve economic 

growth and social welfare. However, it is plausible that a more directed policy intervention can improve these even further. 
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Table 10 

Shutting down the credentialing spending channel – Low earnings persistence 

Variable Baseline ν = 0 Change 

Becoming an inventor, income effect 0.05 0.03 -40.0% 

Becoming an inventor, education effect 0.03 0.05 66.7% 

Productivity as an inventor, income effect 0.05 0.07 40.0% 

Productivity as an inventor, education effect 0.06 0.09 50.0% 

Yearly GDP growth rate 2.00% 2.29% 14.5% 

Education spending/GDP 7.09% 10.7% 51.5% 

Aggregate skilled labor, L s 0.37 0.52 42.5% 

Aggregate unskilled labor, L u 1.72 1.92 11.9% 

Mean innate ability of skilled workers, a 1.85 2.45 32.5% 

Mean pre-college education of skilled workers, h 1.43 2.18 52.7% 

Mean parental wealth of skilled workers, y o 0.70 0.74 5.34% 

Mean bequests received of skilled workers, b 0.45 0.28 -38.3% 

Wage income Gini index 0.49 0.52 6.37% 

Log 90/10 ratio 1.03 1.00 -3.11% 

Log 90/50 ratio 0.48 0.46 -3.71% 

Log 50/10 ratio 0.56 0.54 -2.59% 

Notes: This table displays how statistics of interest change as a result of shutting down 

the credentialing spending channel in the presence of low earnings persistence. 

For instance, one may think of policies in which the government directly subsidizes investment in pre-college education h . 

In Section C.2 of the Online Appendix, a policy package which combines optimal progressive bequest taxation with linear 

pre-college education subsidies (or taxes) is investigated, with surprising results: although subsidizing pre-college education 

can increase economic growth, it delivers lower gains in social welfare compared to no subsidies. In fact, a mild tax rate of 

2 . 5% is found to be optimal, delivering higher gains in welfare at 7.82% as opposed to the 6.20% figure achieved under pure 

progressive bequest taxation. 37 

How to interpret these results? Although the optimal linear rate of subsidies turns out to be negative, this does not 

rule out subsidizing pre-college education in its entirety. Rather, the thought experiment demonstrates that using simple 

linear subsidies might backfire in an environment with heterogeneous households and financial frictions, and deliver re- 

sults at odds with what one would intuitively expect from simpler frameworks with a representative household due to the 

equity-efficiency trade-off. Investigating whether a more progressive pre-college education subsidy scheme coupled with 

progressive bequest taxation can deliver further welfare gains is an interesting avenue for future research. The same is true 

for optimal R&D subsidies, which in this framework would correspond to subsidizing the skilled wage rate w s . Such a policy 

would further intensify the rat-race in the credentialing spending margin that is not present in endogenous growth models 

with a representative consumer, increase the misallocation of talent in the innovation sector, and dampen the usual social 

gains from subsidizing innovation under knowledge spillovers. 

5.5. Recalibration with lower intergenerational earnings persistence 

The intergenerational persistence of innate ability ρ is an important parameter of the model, the value of which has a 

significant bearing on quantitative counterfactuals. Since innate ability is not directly observable, the value of ρ is indirectly 

inferred by trying to match the intergenerational correlation of earnings (IGE) generated in the model with that found in 

the data. However, the exact value of IGE in the U.S. over the time period is not a settled topic in the literature. 38 Although 

consistent with the highly persistent effects of income and education discovered in Section 3 , the value of 0.70 targeted 

in the baseline analysis is on the higher end of the estimates found in the literature. This section repeats the calibration 

exercise in Section 4 with a lower IGE target of 0.45, and assesses its effects. 

The calibrated values of most parameters remain very similar to the results in Table 6 , with the exception of intergen- 

erational persistence of innate ability, ρ . This falls from 0.70 to 0.40, a very significant decrease. As a result, the effects 

of income and education on both margins fall, as well as the differences between the effects for a given regression. The 

earnings inequality in the steady state is also lower. 

How does the lower value of ρ affect the counterfactual experiments? In order to answer this question, the hypothetical 

thought experiment in Section 5.2 is repeated under the new calibration. Table 10 summarizes the results of shutting down 

credentialing spending by setting ν = 0 . The output growth rate of the economy increases from 2.00% to 2.29%, driven by a 

huge 42.5% increase in aggregate skilled labor supply. Compared to the baseline economy, the welfare gain is found to be 

6.63% in consumption-equivalent terms. 

37 Further details are relegated to Section C.2 in the Online Appendix for brevity. 
38 See the seminal work of Solon (1999) on the issue, and Black and Devereux (2010) , Chetty et al. (2014) and the references therein for a recent survey 

of the literature. 
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These values are slightly higher compared to those found in Section 5.2 . Why is this the case? Inspection reveals that this 

is caused by a higher degree of initial misallocation of talent in the low IGE economy. Under the baseline calibration, due 

to the higher persistence of innate ability ρ at 0.70, the rich and the talented largely coincide in the stationary equilibrium. 

When this persistence is lower at 0.40, the chances of a genius being born to a comparatively poor household are higher. As 

a result of this, the mean innate ability a of inventors is lower before the shutdown of the credentialing channel. Hence, the 

growth and welfare implications are amplified when ρ is lower. In other words, the misallocation of talent in innovation 

turns out to be a more significant problem if the persistence of innate ability across generations is low, indicating that 

targeting a high IGE in the baseline calibration was a conservative choice, and the welfare implications are, if anything, 

more significant under this alternative calibration. 

6. Conclusions 

This paper develops a model of misallocation of talent in the innovation sector. Workers in the economy are finitely-lived, 

and heterogeneous in terms of wealth, pre-college education, and innate ability. The sectors in the economy are separated 

into production and innovation, where the latter serves to improve the productivity of the prior. The training necessary 

to become a worker in the innovation sector is scarce. Agents compete against each other in order to acquire this scarce 

training so that they can get innovation sector jobs that pay more. They use productive pre-college education investment 

as well as (socially) unproductive credentialing spending in order to increase their chances. Financial frictions in the form 

of a non-negative bequest constraint and the inability to insure against idiosyncratic risk, coupled with the misalignment 

of private and social incentives result in a misallocation of talent across the two sectors. The nature and magnitude of this 

misallocation of talent are examined. 

Empirical analysis makes use of three sets of micro-data—NBER USPTO Utility Patents Grant Database, The Careers and 

Co-Authorship Networks of U.S. Patent-Holders, and IPUMS-USA 1930 5% Sample—that were previously unlinked in order to 

establish two new stylized facts: (1) People from richer backgrounds are more likely to become inventors; but those from 

more educated backgrounds are not. (2) People from more educated backgrounds become more prolific inventors; but those 

from richer backgrounds exhibit no such aptitude. This discrepancy suggests a misallocation of talent in the innovation 

sector, which motivates the development of a model that can generate the correlation patterns observed in the data. The 

results are robust to the use of alternative patent and inventor quality measures, as well as potential biases that might be 

caused by immigration and similar demographic changes. 

The developed model is calibrated to match data targets including aggregate moments of the U.S. economy such as 

the yearly long-run output growth and real interest rates and the ratio of education spending to GDP; moments obtained 

using micro data such as intergenerational correlation of earnings and wealth and various inequality measures regarding 

the earnings distribution; as well as data targets taken from the original empirical analysis such as the effect of income 

and education on the probability of getting an innovation sector job, and the productivity conditional on having one. The 

calibrated model is then used to explore how the misallocation of talent between the production and innovation sectors is 

generated, and the findings suggest that the welfare effects of this misallocation might be substantial. 

The quantitative analysis reveals that if the credentialing spending channel could be shut down, the aggregate output 

growth rate would increase from 2.00% to 2.21%, leading to a welfare gain of 5.93% in consumption-equivalent terms. An- 

other quantitative experiment that seeks to calculate the socially optimal bequest taxation policy reveals that the growth 

rate could be increased to 2.05% even in a decentralized market economy by leveling the playing field and reducing the 

effect of suboptimal pre-college education spending due to financial frictions. The resulting welfare gain is quite significant 

at 6.20%. A robustness analysis is conducted to show how the model performs when different calibration targets are chosen, 

and the quantitative results are, if anything, amplified. 

The stylized facts established in the empirical analysis are quite provoking, and the model suggests that reducing the 

existing misallocation of talent in the economy might yield significant welfare gains through an increase in the long-run 

output growth rate. Given how important the upper tail of the talent distribution is in generating the ideas that drive 

economic progress, it is likely that policies that alleviate the misallocation through reducing wealth inequality or financial 

frictions might be desirable. Further research is needed to establish more detailed policy responses that take additional life- 

cycle elements into account. The empirical methodology used in the paper can also be applied in any other sector where 

surname-level information is available, which would considerably expand our understanding of the allocation of talent in 

other sectors, as well as the intergenerational dynamics of socioeconomic status. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmoneco.2022.11. 

003 . 
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Online Appendices for “Does the Cream Always Rise
to the Top? The Misallocation of Talent in Innovation”

A Theory Appendix

A.1 Proof of Theorem 1:

The static profit maximization of a firm is stated as follows:

Π(z,Θ) = max
k,lu≥0

{zζkκlλu − (r + δ)k − wulu} (33)

First order conditions imply l∗u = λo∗

wu
and k∗ = κo∗

r+δ , hence we have

o∗ = zζ
(
κo∗

r + δ

)κ(λo∗
wu

)λ

o∗ =

[(
κ

r + δ

)κ( λ

wu

)λ
]1/ζ

z (34)

and the profits are simply equal to Π(z,Θ) = ζo∗. From the unskilled labor market clearing
condition, we get

Lu =

∫
l∗u(z)dZ(z)

Lu =
λ

wu

[(
κ

r + δ

)κ( λ

wu

)λ
]1/ζ ∫

zdZ(z)

(wu

λ

)λ+ζ
ζ

=

(
κ

r + δ

)κ/ζ z̄

Lu

wu = λ

(
κ

r + δ

) κ
λ+ζ

L
− ζ

λ+ζ
u z̄

ζ
λ+ζ (35)

where z̄ ≡
∫
zdZ(z). Note that since Lu is constant along the balanced growth path, the unskilled

wage rate grows with gross rate (1 + gz)
ζ/(λ+ζ). Similarly, the capital market clearing condition

44



Does the Cream Always Rise to the Top? The Misallocation of Talent in Innovation

yields

K =

∫
k∗(z)dZ(z)

K =
κ

r + δ

[(
κ

r + δ

)κ( λ

wu

)λ
]1/ζ ∫

zdZ(z)

(
r + δ

κ

)κ+ζ
ζ

=

(
λ

wu

)λ/ζ z̄

K

r = κ

(
λ

wu

) λ
κ+ζ

K
− ζ

κ+ζ z̄
ζ

κ+ζ − δ (36)

This time since wu, K and z̄ grow over time at gross rates (1 + gz)
ζ/(λ+ζ), (1 + gz)

ζ/(λ+ζ), and
(1 + gz) respectively, the interest rate will be constant along the balanced growth path. Define

K̃ = K/z̄
ζ

λ+ζ as the relative aggregate capital stock. Combining Equations (35) and (36) yields the
simplified expressions:

wu = λK̃κLλ−1
u z̄

ζ
λ+ζ

r + δ = κK̃κ−1Lλ
u

Plugging the expressions for the unskilled wage rate and the interest rate into the profits yields

Π(z,Θ) = ζK̃κLλ
u

z

z̄λ/(λ+ζ)

≡ π
z

z̄λ/(λ+ζ)
(37)

where π is a time invariant constant.

Define ẑ ≡ z/z̄λ/(λ+ζ), z̃ ≡ z̄ζ/(λ+ζ) and w̃s ≡ ws/z̃. The guess and verify method will be
used to solve the value function of the firm in the innovation decision problem. Assume the value
function of the firm has the form V (z,Θ) = v1ẑ + v2z̃ where v1 and v2 are scalars. Plugging the
solution into the problem, we get:

V (z,Θ) = max
ls≥0

{
Π(z,Θ) +

χlξs
1 + r

V (z + γz̄,Θ′) +
(1− χlξs)

1 + r
V (z,Θ′)− wsls

}

= πẑ +
v1ẑ

(1 + r)(1 + gz)λ/(ζ+λ)
+
v2(1 + gz)

ζ/(λ+ζ)z̃

(1 + r)

+max
ls≥0

{
χlξs
1 + r

v1γ

(1 + gz)λ/(ζ+λ)
− w̃sls

}
z̃

(38)
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= πẑ +
v1ẑ

(1 + r)(1 + gz)λ/(ζ+λ)
+
v2(1 + gz)

ζ/(λ+ζ)z̃

(1 + r)

+

(
ξ

w̃s

) ξ
1−ξ
[

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

(1− ξ)z̃

= v1ẑ + v2z̃

where

v1 =
(1 + r)(1 + gz)

λ/(ζ+λ)

(1 + r)(1 + gz)λ/(ζ+λ) − 1
π (39)

v2 =
(1 + r)

(1 + r)− (1 + gz)ζ/(λ+ζ)

[(
ξ

w̃s

) ξ
1−ξ
[

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

(1− ξ)

]
(40)

l∗s =

[
ξ

w̃s

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

It is required to verify that ws grows at gross rate (1+ gz)
ζ/(λ+ζ). Market clearing for skilled labor

requires

Ls =

∫
l∗sdZ(z)

Ls =

[
ξ

ws

χγv1z̃

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

ws =
ξχγv1z̃

(1 + r)(1 + gz)λ/(ζ+λ)L1−ξ
s

ws =
ξχγπz̃

((1 + r)(1 + gz)λ/(ζ+λ) − 1)L1−ξ
s

(41)

proving the statement. Also notice that Ls = l∗s . The aggregate productivity evolves according to

z̄′ = z̄ + γχLξ
sz̄

⇒ gz = ΓLξ
s (42)

where Γ ≡ γχ. This concludes the proof.

A.2 Computational algorithm

Given closed-form solutions for the firm’s maximization problem and the resulting system of non-
linear equations in Theorem 1, the following computational algorithm is used to solve for the BGP
equilibrium of the model:

1. Create grids for yo, h, b, yy, a.

2. Guess initial Vo(yo, h, a), Vc(b, h, a), Vy(yy, a).

3. Guess initial wu, ws, r, g, s̄.
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4. Until convergence in value functions according to the sup-norm is achieved, do:

(a) Solve:

Vo(yo, hy, ay,Θ) = max
co,b≥0

{u(c0) + αVc(b, hy, ay,Θ)} s.t.

co + b ≤ y0

Details: Single variable maximization where b ∈ [0, yo]. One dimensional interpolation
is required for evaluation.

(b) Solve:

Vc(b, hy, ay,Θ) = max
n≥0

{E [Vy(yy, ay,Θ)|·]} s.t.

yy =

(
wjy +

w′
jy

1 + r′

)
ly(hy, ay) + b− cn(n)

jy ∼ F (j; ly(hy, ay), n,Θ)

Details: Single variable maximization where n ∈ [o, n̄], where n̄ assures positive yy in the
worst case scenario. One dimensional interpolation is required for evaluation. Normal
cumulative distribution function is required for calculations. Expectation is calculated
over j realization.

(c) Solve:

Vy(yy, ay,Θ) = max
cy ,cc,h′

y ,s≥0
{u(cy) + αu(cc) +

βE[Vo(y′o, h′y, a′y,Θ′)|·]} s.t.

yy ≥ cy + cc + ch(h
′
y) + s

y′o = (1 + r′)s

a′y ∼ g(ay)

Θ′ = T (Θ)

Two variable maximization where s ∈ [0, yy], h ∈ [0, (yy/κh)
1/xih ], and the resulting

cy and cc must be positive. Two dimensional interpolation is required for evaluation.
Expectation is calculated over a′ realization.

5. Simulate to calculate capital, skilled and unskilled labor, and fraction of population in each
job. One uniform and one normal draw are required for each household and period.

6. Update wu, ws, r, g, s̄ using simulation results, and go back to (4) up until they are consistent
with the market clearing equations and η.

A.3 Aggregate factor demand equations

For computational purposes, it is useful to characterize aggregate factor demands in terms of only
factor prices, and factor prices only in terms of aggregate factor demands. This section derives
these algebraically using the equations from Appendix A.
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In a stationary equilibrium, the aggregate demand for skilled and unskilled labor, Ls and Lu,
and the capital rental rate r are constants. The aggregate demand for capital, K, and the wage
rates for skilled and unskilled labor, ws and wu, grow at the same rate as aggregate output, in
proportion to z̃ = z̄ζ/(λ+ζ). Define normalized aggregate capital stock, skilled and unskilled wage
rates as K̃ = K/z̃, w̃s = ws/z̃ and w̃u = wu/z̃ respectively. First, notice that by only using the
definition for w̃u and Equation (34), the following identity for π is obtained:

π = ζ

[(
κ

r + δ

)κ( λ

w̃u

)λ
]1/ζ

(43)

Then we have:

Lu =

(
κ

r + δ

)κ/ζ ( λ

w̃u

)λ+ζ
ζ

(44)

K̃ =

(
κ

r + δ

)κ+ζ
ζ
(
λ

w̃u

)λ
ζ

(45)

Ls =

[
ξ

w̃s

χγπ

((1 + r)(1 + gz)λ/(ζ+λ) − 1)

] 1
1−ξ

(46)

Given these equations, it can be verified that:

π = ζK̃κLλ
u (47)

Then we have:

w̃u = λK̃κLλ−1
u (48)

r + δ = κK̃κ−1Lλ
u (49)

w̃s =
ξχγπ

((1 + r)(1 + gz)λ/(ζ+λ) − 1)L1−ξ
s

(50)
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B Empirical Appendix

B.1 Data Sources

B.1.1 NBER USPTO Utility Patents Grant Data

Patents are exclusionary rights, granted by national patent offices, to protect a patent holder for a
certain amount of time, conditional on sharing the details of the invention. United States Patent
and Trademarks Office (USPTO) is the agency in the U.S. Department of Commerce that issues
patents to inventors and businesses for their inventions. From the great amount of information
available in the files of USPTO, a substantial subsample has been compiled in an easy-to-use
format by a group of researchers from the National Bureau of Economic Research (NBER) under
the name NBER Patent Data Project (PDP).39

This dataset contains detailed information on 3,210,361 utility patents granted by USPTO
between the years 1976 and 2006. Each patent granted in the U.S. is assigned a unique patent
number that makes it possible to link this dataset to many other datasets that contain information
on patents some of which will be described further along. An important feature of this dataset is
to provide citation links between individual patents. Similar to an academic paper, a new patent
has to cite previous patents on which it builds, or other patents concerned with a similar but
different invention, so that proper boundaries between the new and old patents can be established.
The number of citations a patent receives from other patents is found in the literature to be a
good proxy for its social and private value.40 Since the citations a patent will receive throughout
its lifetime cannot be known at a fixed point in time, and due to systematic citation differences
between patents that belong to different technology classes, corrections need to be made to the
citation numbers before using them as a proxy for patent quality. Hall, Jaffe, and Trajtenberg
(2001) devise some correction weights to account for these biases, and their correction is used
throughout this paper unless mentioned otherwise.

B.1.2 The Careers and Co-Authorship Networks of U.S. Patent-Holders

Filing a patent application in the U.S. requires providing the names of three types of individuals
in the application form: The assignees who own the patent once granted, the applicants who are
responsible for legal correspondence with USPTO, and the inventors who actually came up with the
innovation.41 Extensive information on the inventors of patents granted in the U.S. between years
1975-2008 is obtained from a dataset produced by Li, Lai, D’Amour, Doolin, Sun, Torvik, Amy,
and Fleming (2014).42 Unlike the PDP data, this dataset contains the names of every inventor
who has worked on a patent granted in the U.S. between years 1975-2008. This is crucial, since
55.3% of the patents in the sample were created by a group of inventors. Another novel feature of
this data is the provision of a unique inventor identifier which makes it possible to track the patent
portfolio of individual inventors throughout their careers.

39For more information, please visit https://sites.google.com/site/patentdataproject/
40For instance, Hall, Jaffe, and Trajtenberg (2005) argue that the citation-weighted patent portfolio of a firm

is a plausible indicator of the intangible knowledge stock of a private firm, and that this measure has additional
explanatory power for the market value of the firm beyond the conventional discounted sum of R&D spending.

41Hence, the owner of a patent or the manager in an innovating firm are not listed as inventors unless they took part
in the innovation process. USPTO explicitly states the following: “All inventor(s) named in the provisional application
must have made a contribution, either jointly or individually, to the invention disclosed in the application.”

42Please visit http://hdl.handle.net/1902.1/12367 to access the data.
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The dataset contains 8,031,908 observations at the patent × inventor level, and 2,229,219 unique
inventors. Among other variables, the dataset contains address information of the inventors as well
as their names and surnames. The address information is used to determine the country the
inventor lives in at the registration date of the patent so that the analysis can be restricted to
U.S. inventors only. The surname information is used to create a relative representation (among
inventors) measure at the surname level and link the socioeconomic background data from 1930 to
inventors today.

B.1.3 IPUMS-USA 1930 5% Sample

Integrated Public Use Microdata Series (IPUMS-USA) is a project dedicated to collecting and
distributing United States census data, and it consists of more than fifty high-precision samples of
the American population drawn from federal censuses. The particular sample used in this project
is the 1930 sample which contains information on 5% of all Americans who were counted in the
1930 census. The 1930 sample is preferred over other samples since it is the most recent publicly
available sample that contains name and surname information at the observation level.43

Since the dataset contains census information, the wealth of information at the individual level is
considerable. The main information derived from this dataset is on socioeconomic status of people
with a particular surname, such as income and education levels collapsed at the surname level.
Similar to other studies that use the IPUMS samples prior to 1940 (e.g., Olivetti and Paserman
(2015)), income associated with a surname is measured using the OCCSCORE variable measured
in hundreds of 1950 U.S. dollars based on occupation. This variable includes income from non-
wage activities such as interest income and dividends in addition to earnings. Finally, EDSCOR50
variable is used as the education variable which measures college attendance. Ruggles, Alexander,
Genadek, Goeken, Schroeder, and Sobek (2010) and the project website contain further details on
the dataset and variables.44

B.1.4 Demographic Aspects of Surnames from Census 2000

This dataset released by the U.S. Census Bureau in 2007 contains information on the overall
frequency of surnames in the U.S. constructed using the 2000 decennial census of population,
based on approximately 270 million individuals with valid surnames.45 It contains 151,671 unique
surnames. Combined with the U.S. inventor data previously discussed, it is possible to create
measures of probability of becoming an inventor at the surname level. This dataset further includes
information on the ethnicity distribution for each surname broken down into six categories (White,
Black, Hispanic, Asian or Pacific Islander, American Indian or Alaskan Native, or mixed). These
variables are used to create dominant race fixed effects for race associated with a surname. One
caveat of the data is that it only includes surnames that have a frequency above hundred, which
makes it unsuitable to use in questions regarding extremely rare surnames. Such rare surnames are
therefore excluded from the following analysis.

43Individual questionnaires of any specific census are not released by the National Archives until 72 years after that
specific census has been taken due to confidentiality requirements. Name and surname information is also available
for other samples spanning the years 1850-1920 in the IPUMS database; however, they are less recent, and most of
these samples are at 1% level instead of 5%.

44IPUMS-USA project website can be accessed at https://usa.ipums.org/usa/index.shtml.
45Refer to Word, Coleman, Nunziata, and Kominski (2008) for a detailed description, and http://www.census.

gov/genealogy/www/data/2000surnames/index.html for the data.
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B.2 Additional Tables

Table B1: Summary Statistics

Panel A. Becoming an Inventor (Extensive Margin)

Observation Mean St. Dev
relative representation (1975-2008) 110,290 83.1 68.6
income (1930) 110,290 21.7 3.70
education (1930) 110,290 15.8 17.5
is black 110,290 2.28 14.9
is asian 110,290 1.52 12.2
is native 110,290 .048 2.20
is hispanic 110,290 11.4 31.8
is mixed 110,290 .002 .438

Panel B. Productivity as an Inventor (Intensive Margin)

log quality weighted total patents (1975-2006) 81,348 3.65 .664
log average patent quality (1975-2006) 81,348 2.53 .387
log maximum patent quality (1975-2006) 81,348 2.95 .455
log total patents (renewed thrice) (1975-2006) 78,438 .695 .287
log total patents (top 10% only) (1975-2006) 81,348 .321 .200
log income (1930) 81,348 3.11 .158
log education (1930) 81,348 2.69 .494
is black 81,348 2.05 14.2
is asian 81,348 1.55 12.3
is native 81,348 .035 1.87
is hispanic 81,348 11.7 32.1
is mixed 81,348 .001 .38

Notes: Relative representation and dominant race indicator variables are multiplied by 100 for clarity. The means

and standard deviations reported on the table are weighted by the share of the surname in the general population

obtained from the U.S. decennial census of population of 2000. Patent quality is measured by the number of patent

citations corrected for truncation using the correction terms from Hall, Jaffe, and Trajtenberg (2001).
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Table B2: Productivity as an Inventor (Intensive Margin) – Alternative
Measures II

log total patents log total patents log total patents log total patents

(renewed once) (renewed twice) (top 5% only) (top 20% only)

(1975-2006) (1975-2006) (1975-2006) (1975-2006)

log income (1930) .037∗∗∗ .033∗∗∗ .029∗∗∗ .033∗∗∗

(.009) (.009) (.008) (.009)

log education (1930) .099∗∗∗ .099∗∗∗ .075∗∗∗ .096∗∗∗

(.008) (.008) (.008) (.008)
Obs. 78,438 78,438 81,348 81,348
R2 0.05 0.05 0.03 0.04

Notes: Robust standard errors in parentheses. Dominant race fixed effects are included the coefficients of which are

suppressed for brevity. All variables are normalized by subtracting the mean and dividing by the standard deviation.

Observations are weighted by the share of the surname in the general population obtained from the U.S. decennial

census of population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table B3: Immigration Robustness (1880-1930) – Becoming an Inventor (Extensive
Margin)

relative representation (1975-2008)
(1) (2) (3) (4) (5) (6)

income (1930) .296∗∗∗ .304∗∗∗ .323∗∗∗ .223∗∗∗ .307∗∗∗ .293∗∗∗

(.014) (.014) (.015) (.017) (.017) (.013)

education (1930) .004 .008 −.003 .003 .021∗ .005
(.007) (.009) (.010) (.005) (.012) (.007)

pop. share(1930)/pop. share(1880) .053∗∗∗

(.032)
Obs. 64,308 48,282 48,289 32,168 32,159 64,308
R2 0.35 0.33 0.38 0.46 0.30 0.35

Notes: Column 1 repeats the last column of Table 1 for surnames which population share ratio is not missing. Columns

2 and 3 repeat the same regression after dropping the top and bottom 25% of the sample according to population share

ratio respectively. Columns 4 and 5 repeat the same exercise for the top and bottom halves of the sample respectively.

Column 6 repeats the same regression with the whole sample while introducing the population share ratio linearly

as a regressor in addition to income and education. Robust standard errors in parentheses. Dominant race fixed

effects are included the coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the surname in the

general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote significance

at 10, 5 and 1% levels respectively.
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Table B4: Immigration Robustness (1880-1930) – Productivity as an Inventor
(Intensive Margin)

log quality wtd. total patents (1975-2006)
(1) (2) (3) (4) (5) (6)

log income (1930) .022∗ .009 .045∗∗∗ .106∗∗∗ −.005 .022∗

(.012) (.012) (.014) (.019) (.017) (.012)

log education (1930) .142∗∗∗ .138∗∗∗ .141∗∗∗ .089∗∗∗ .140∗∗∗ .141∗∗∗

(.011) (.011) (.013) (.018) (.011) (.011)

pop. share(1930)/pop. share(1880) −.003
(.005)

Obs. 50,529 37,921 37,897 25,269 25,265 64,308
R2 0.05 0.05 0.05 0.04 0.04 0.35

Notes: Column 1 repeats the last column of Table 2 for surnames which population share ratio is not missing. Columns

2 and 3 repeat the same regression after dropping the top and bottom 25% of the sample according to population share

ratio respectively. Columns 4 and 5 repeat the same exercise for the top and bottom halves of the sample respectively.

Column 6 repeats the same regression with the whole sample while introducing the population share ratio linearly

as a regressor in addition to income and education. Robust standard errors in parentheses. Dominant race fixed

effects are included the coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the surname in the

general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote significance

at 10, 5 and 1% levels respectively.

Table B5: Becoming an Inventor (Extensive Margin) – Male Only

relative relative relative

representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .259∗∗∗ .259∗∗∗

(.008) (.008)

education (1930) .024∗∗∗ .000
(.004) (.003)

Obs. 107,613 107,613 107,613
R2 0.24 0.18 0.24

Notes: Data is obtained exclusively from the males in all samples. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.
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Table B6: Productivity as an Inventor (Intensive Margin) – Male Only

log quality wtd. log quality wtd. log quality wtd.

total patents total patents total patents

(1975-2006) (1975-2006) (1975-2006)

log income (1930) .072∗∗∗ .006
(.008) (.009)

log education (1930) .176∗∗∗ .173∗∗∗

(.009) (.010)
Obs. 76,265 76,265 76,265
R2 0.02 0.05 0.05

Notes: Data is obtained exclusively from the males in all samples. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.

Table B7: Becoming an Inventor (Extensive Margin) – Female Only

relative relative relative

representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .075∗∗∗ .082∗∗∗

(.013) (.015)

education (1930) .024∗ −.015
(.013) (.014)

Obs. 67,240 67,240 67,240
R2 0.16 0.15 0.16

Notes: Data is obtained exclusively from the females in all samples. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.

54



Does the Cream Always Rise to the Top? The Misallocation of Talent in Innovation

Table B8: Productivity as an Inventor (Intensive Margin) – Female Only

log quality wtd. log quality wtd. log quality wtd.

total patents total patents total patents

(1975-2006) (1975-2006) (1975-2006)

log income (1930) −.025 −.072∗∗∗
(.016) (.019)

log education (1930) .061∗∗∗ .103∗∗∗

(.016) (.019)
Obs. 16,117 16,117 16,117
R2 0.02 0.02 0.02

Notes: Data is obtained exclusively from the females in all samples. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.

Table B9: Additional Robustness Checks – Becoming an Inventor (Extensive
Margin)

relative relative relative relative

representation representation representation representation

(1975-2008) (1975-2008) (1975-2008) (1975-2008)

income (1930) .239∗∗∗ .230∗∗∗ .202∗∗∗ .179∗∗∗

(.010) (.011) (.010) (.011)

education (1930) .001 −.001 .012∗∗ .008
(.005) (.005) (.005) (.005)

household size (1930) .012∗∗ .006
(.006) (.006)

literacy rate (1930) .049∗∗∗ .108∗∗∗

(.010) (.012)

non-native origin (1930) .246∗∗∗ .267∗∗∗

(.013) (.014)
Obs. 110,290 110,289 110,290 110,289
R2 0.27 0.27 0.31 0.32

Notes: Household size and literacy rates are averages at the surname level. Non-native origin is the fraction of people

with the surname whose parents (at least one) were of foreign origin. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.
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Table B10: Additional Robustness Checks – Productivity as an Inventor
(Intensive Margin)

log quality wtd. log quality wtd. log quality wtd. log quality wtd.

total patents total patents total patents total patents

(1975-2006) (1975-2006) (1975-2006) (1975-2006)

log income (1930) .001 −.001 .013 .013
(.009) (.009) (.010) (.010)

log education (1930) .175∗∗∗ .174∗∗∗ .162∗∗∗ .162∗∗∗

(.009) (.009) (.009) (.009)

household size (1930) −.008 −.007
(.006) (.006)

literacy rate (1930) .009 −.001
(.011) (.011)

non-native origin (1930) −.052∗∗∗ −.052∗∗∗
(.010) (.010)

Obs. 81,348 81,347 81,348 81,347
R2 0.05 0.05 0.05 0.05

Notes: Household size and literacy rates are averages at the surname level. Non-native origin is the fraction of people

with the surname whose parents (at least one) were of foreign origin. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of the surname

in the general population obtained from the U.S. decennial census of population (2000). *, ** and *** denote

significance at 10, 5 and 1% levels respectively.

Table B11: Extensive Margin Regressions with Intensive Margin Subsample

relative relative relative

representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .269∗∗∗ .269∗∗∗

(.012) (.012)

education (1930) .030∗∗∗ −.003
(.007) (.006)

Obs. 81,348 81,348 81,348
R2 0.30 0.24 0.30

Notes: The regressions in Table 1 are replicated while restricting the sample of surnames to those in Table 2. Robust

standard errors in parentheses. Dominant race fixed effects are included the coefficients of which are suppressed for

brevity. All variables are normalized by subtracting the mean and dividing by the standard deviation. Observations

are weighted by the share of the surname in the general population obtained from the U.S. decennial census of

population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.
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Table B12: Rare Surnames – Intensive and Extensive Margins

(unweighted) (without frequent surnames) (inverse standard dev. wtd.)

relative log quality wtd. relative log quality wtd. relative log quality wtd.

represent. total patents represent. log patents represent. total patents

income (1930) .072∗∗∗ .181∗∗∗ .080∗∗∗

(.004) (.006) (.006)

education (1930) .005 .000 .004
(.003) (.003) (.003)

log income (1930) .012∗∗∗ .049∗∗∗ .004
(.004) (.007) (.008)

log education (1930) .061∗∗∗ .118∗∗∗ .068∗∗∗

(.004) (.018) (.008)
Obs. 110,290 81,348 109,052 80,243 89,099 69,160
R2 0.03 0.01 0.16 0.04 0.03 0.01

Notes: Columns 1 and 2 repeat the regressions on the last columns of Tables 1 and 2 without using any weights.

Columns 3 and 4 repeat the same regressions in a reduced sample where surnames that are more frequent than the

median surname are dropped. Columns 5 and 6 repeat the same regressions where the inverse of the standard deviation

in income and education (geometric average) is used as weight. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. *, ** and *** denote significance at 10, 5 and 1%

levels respectively.

Table B13: Becoming an Inventor (Extensive Margin) – 1975-1995 Only

relative relative relative

representation representation representation

(1975-1995) (1975-1995) (1975-1995)

income (1930) .245∗∗∗ .245∗∗∗

(.008) (.008)

education (1930) .028∗∗∗ −.000
(.005) (.003)

Obs. 110,290 110,290 110,290
R2 0.21 0.16 0.21

Notes: Inventor data is obtained exclusively from the 1975-1995 period. Robust standard errors in parentheses.

Dominant race fixed effects are included the coefficients of which are suppressed for brevity. All variables are nor-

malized by subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of

the surname in the general population obtained from the U.S. decennial census of population (2000). *, ** and ***

denote significance at 10, 5 and 1% levels respectively.
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Table B14: Productivity as an Inventor (Intensive Margin) – 1975-1995 Only

log quality wtd. log quality wtd. log quality wtd.

total patents total patents total patents

(1975-1995) (1975-1995) (1975-1995)

log income (1930) .060∗∗∗ .006
(.009) (.010)

log education (1930) .151∗∗∗ .149∗∗∗

(.009) (.009)
Obs. 70,032 70,032 70,032
R2 0.03 0.04 0.04

Notes: Inventor data is obtained exclusively from the 1975-1995 period. Robust standard errors in parentheses.

Dominant race fixed effects are included the coefficients of which are suppressed for brevity. All variables are nor-

malized by subtracting the mean and dividing by the standard deviation. Observations are weighted by the share of

the surname in the general population obtained from the U.S. decennial census of population (2000). *, ** and ***

denote significance at 10, 5 and 1% levels respectively.

Table B15: Becoming an Inventor (Extensive Margin) – Ethnicity 1

relative relative relative
representation representation representation

income (1930) .234∗∗∗ .233∗∗∗

(.010) (.010)

education (1930) .034∗∗∗ .007
(.008) (.006)

Obs. 94,241 94,241 94,241
R2 0.78 0.80 0.78

Notes: Robust standard errors in parentheses. Dominant race and ethnicity fixed effects are included the coefficients

of which are suppressed for brevity. Surnames not matched to an ethnicity are not included. All variables are

normalized by subtracting the mean and dividing by the standard deviation. Observations are weighted by the share

of the surname in the general population obtained from the U.S. decennial census of population (2000). *, ** and

*** denote significance at 10, 5 and 1% levels respectively.
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Table B16: Productivity as an Inventor (Intensive Margin) – Ethnicity 1

log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents

log income (1930) .062∗∗∗ .013
(.009) (.010)

log education (1930) .134∗∗∗ .129∗∗∗

(.009) (.010)
Obs. 72,018 72,018 72,018
R2 0.07 0.08 0.08

Notes: Robust standard errors in parentheses. Dominant race and ethnicity fixed effects are included the coefficients

of which are suppressed for brevity. Surnames not matched to an ethnicity are not included. All variables are

normalized by subtracting the mean and dividing by the standard deviation. Observations are weighted by the share

of the surname in the general population obtained from the U.S. decennial census of population (2000). *, ** and

*** denote significance at 10, 5 and 1% levels respectively.

Table B17: Becoming an Inventor (Extensive Margin) – Ethnicity 2

relative relative relative
representation representation representation

income (1930) .208∗∗∗ .207∗∗∗

(.009) (.009)

education (1930) .030∗∗∗ .007
(.006) (.005)

Obs. 110,290 110,290 110,290
R2 0.81 0.83 0.81

Notes: Robust standard errors in parentheses. Dominant race and ethnicity fixed effects are included the coefficients

of which are suppressed for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population obtained from the U.S.

decennial census of population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.
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Table B18: Productivity as an Inventor (Intensive Margin) – Ethnicity 2

log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents

log income (1930) .054∗∗∗ .009
(.008) (.009)

log education (1930) .123∗∗∗ .119∗∗∗

(.008) (.009)
Obs. 81,348 81,348 81,348
R2 0.08 0.09 0.09

Notes: Robust standard errors in parentheses. Dominant race and ethnicity fixed effects are included the coefficients

of which are suppressed for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population obtained from the U.S.

decennial census of population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.
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C Quantitative Appendix

C.1 Relaxing the scarce inventor training assumption

The fraction of inventor training available in the society η is assumed to be exogenously fixed in the
model. This means that only a fraction η of the population can receive the education necessary to
produce ideas and become inventors. As a result, this assumption implies that the output growth
rate of the economy can only be increased by allocating more productive individuals as inventors
rather than increasing the share of inventors in the population. How would the counterfactual
exercises look like if this assumption was relaxed?

In order to answer this question, the opposite extreme will be considered. Recall that the score
threshold s̄t was chosen such that

η =

∫ ∞

s̄t

s̃dS̃t(s̃)

held. Consider setting the fraction η free and fixing s̄t instead. In this alternative specification
s̄t denotes a fixed achievement rating in score. Individuals who have scores greater than this
threshold get inventor training, and the rest do not. The calibration of this alternative model is
trivial: The parameter η which was externally calibrated becomes an additional targeted moment,
and s̄ becomes a parameter instead.

Table C1 presents the results of repeating the credentialing spending shutdown experiment
executed in Section 5.2 under this alternative model specification. The changes are quite significant:
Now that η is freely chosen, its value increases from 11.6% to 44.9%. This means nearly half of
the population is now allocated to the innovation sector. As a result, the skilled labor supply is
quadrupled, and the output growth rate is nearly doubled, increasing from 2.00% to 3.45%. As one
would expect, the welfare gain from this increase is also calculated to be huge at 107%.

Naturally, these numbers are not to be taken seriously, since the specification does not impose
any additional cost on the society for quadrupling the amount of inventor training provided. Rather,
these should be viewed as the extreme upper bound on the growth and welfare numbers that could
be achieved by relaxing the fixed η assumption. This example also serves to illustrate the fact that
exogenously fixing η is a conservative assumption in terms of putting a discipline on the growth
and welfare numbers produced by the model in the counterfactual experiments.

61



Murat Alp Celik

Table C1: Shutting down the credentialing spending channel – Free η

Variable Baseline ν = 0 Change

Becoming an inventor, income effect 0.19 0.11 -42.1%
Becoming an inventor, education effect 0.07 0.09 28.6%
Productivity as an inventor, income effect 0.08 0.16 100%
Productivity as an inventor, education effect 0.22 0.13 -40.9%
Yearly GDP growth rate 2.00% 3.45% 72.3%
Education spending/GDP 8.55% 11.8% 37.9%
Aggregate skilled labor, Ls 0.48 2.09 332%
Aggregate unskilled labor, Lu 1.91 1.39 -27.3%
Mean innate ability of skilled workers, a 2.08 1.78 -14.5%
Mean pre-college education of skilled workers, h 2.27 3.45 51.9%
Mean parental wealth of skilled workers, yo 0.87 0.96 9.68%
Mean bequests received of skilled workers, b 0.49 0.46 -5.37%
Wage income Gini index 0.52 0.50 -4.91%
Log 90/10 ratio 1.17 1.82 55.5%
Log 90/50 ratio 0.52 1.17 125%
Log 50/10 ratio 0.65 0.65 -0.06%

Notes: This table displays how statistics of interest change as a result of shutting down the

credentialing spending channel with unconstrained inventor training η.

62



Does the Cream Always Rise to the Top? The Misallocation of Talent in Innovation

C.2 Subsidizing or taxing pre-college education spending

The optimal progressive bequest taxation thought experiment in Section 5.3 considered a scenario
in which the bequests b that old adults transfer to their children were taxed according to a particular
functional form given in Equation (31), and the proceeds (if any) were transmitted as lump-sum
payments Tr to all young adults, not conditional on any characteristics. However, it is plausible
that a more directed policy intervention can improve economic growth and social welfare more
than this transfer scheme. For example, one may think of policies in which the government directly
subsidizes investment in pre-college education h. In this subsection, a scheme which combines
optimal progressive bequest taxation with pre-college education subsidies (or taxes) is investigated.

In this thought experiment, the functional form of bequest taxes is left exactly as in Equation
(31). However, now the government is allowed to subsidize or tax the parental investment in pre-
college education of their children, which changes the budget constraint of young adults after job
allocation to

yy ≥ cy + cc + (1− sh)ch(h
′
y) + s (51)

where sh stands for the pre-college education subsidy rate if positive, and the tax rate if negative.
Under this structure, the government is allowed to use its tax revenues on financing subsidies or
lump-sum transfers. As in the previous experiment, the government must balance its budget every
period so that the resultant equilibrium is stationary. The government chooses τs, τp, T r, and sh to
maximize the social welfare function given in Equation (28).

The quantitative results arising from this alternative structure turn out to be surprising. It
is natural to expect that a positive subsidy would increase the annual GDP growth rate in the
economy, as subsidizing pre-college education would improve the human capital of the inventors,
and therefore the aggregate skilled labor Ls in a stationary equilibrium. In line with expectations,
positive values of sh do indeed increase economic growth. However, the consumption-equivalent
welfare change in such equilibria turns out to be strictly lower than what one can achieve by
progressive bequest taxation alone. This is because subsidizing pre-college education spending
using a linear subsidy rate favors richer families with mediocre children more than poorer families
with talented children. Recall that the original experiment in Section 5.3 incentivized the rich
parents to prefer direct investment in pre-college education rather than bequeathing resources that
can be used for credentialing spending. Subsidizing pre-college education provides further incentives
to use this channel, and thereby avoid paying bequest taxes. In the end, subsidizing pre-college
education in a direct fashion turns out to make the whole policy package more regressive, and
cancels out some of the welfare gains achieved through progressive taxation of bequests. Positive
values of sh are therefore not socially optimal.

Motivated by this finding, optimal (linear) taxation of pre-college education is considered
(sh < 0). Calculations reveal that a mild linear tax rate of sh = −2.5% maximizes social wel-
fare, delivering a consumption-equivalent welfare change of 7.82%. Table C2 presents the changes
in the variables of interest compared to the baseline economy. It is useful to compare these figures
to the progressive bequest taxation counterfactual experiment presented earlier in Table 9. The
increase in the aggregate growth rate is 2.04% compared to the 2.05% achieved under sh = 0.
Compared to the baseline, the growth is still 1.9% higher, but the tax on pre-college education
spending prevents aggregate skilled labor Ls from increasing as much, and aggregate unskilled
labor Lu goes down compared to the baseline. On the other hand, the changes in the average
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characteristics of skilled workers are all in the same direction, albeit milder. The gains in welfare
come chiefly through the redistribution margin: even though the growth rate and level of output
are lower compared to sh = 0, the new tax allows the government to achieve a higher degree of
redistribution of resources from richer to poorer households. Unlike the pure progressive bequest
taxation experiment, inequality as measured by log 90/10, log 90/50, and log 50/10 ratios all go
down rather than up, which delivers higher gains in welfare at 7.82% as opposed to the 6.20% figure
achieved under sh = 0.

How to interpret these results? Although the optimal linear rate of sh turns out to be nega-
tive, this does not rule out subsidizing pre-college education in its entirety. Rather, the thought
experiment demonstrates that using simple linear subsidies might backfire in an environment with
heterogeneous households and financial frictions, and deliver results at odds with what one would
intuitively expect from simpler frameworks with a representative household due to the equity-
efficiency trade-off. Investigating whether a more progressive pre-college education subsidy scheme
coupled with progressive bequest taxation can deliver further welfare gains is an interesting avenue
for future research. The same is true for optimal R&D subsidies, which in this framework would
correspond to subsidizing the skilled wage rate ws. Such a policy would further intensify the rat-
race in the credentialing spending margin that is not present in endogenous growth models with a
representative consumer, increase the misallocation of talent in the innovation sector, and dampen
the usual social gains from subsidizing innovation under knowledge spillovers.

Table C2: Optimal taxation of pre-college education spending alongside
progressive bequest taxation

Variable Baseline Optimal h tax (2.5%) Change

Becoming an inventor, income effect 0.19 0.19 -1.32%
Becoming an inventor, education effect 0.07 0.07 5.71%
Productivity as an inventor, income effect 0.08 -0.05 -167%
Productivity as an inventor, education effect 0.22 0.37 66.1%
Yearly GDP growth rate 2.00% 2.04% 1.90%
Education spending/GDP 8.55% 8.29% -3.02%
Aggregate skilled labor, Ls 0.48 0.51 4.77%
Aggregate unskilled labor, Lu 1.91 1.84 -3.78%
Mean innate ability of skilled workers, a 2.08 2.15 3.21%
Mean pre-college education of skilled workers, h 2.27 2.39 5.13%
Mean parental wealth of skilled workers, yo 0.87 0.84 -3.53%
Mean bequests received of skilled workers, b 0.49 0.44 -9.73%
Wage income Gini index 0.52 0.54 3.59%
Log 90/10 ratio 1.17 1.13 -3.29%
Log 90/50 ratio 0.52 0.52 -0.41%
Log 50/10 ratio 0.65 0.61 -5.61%

Notes: This table displays how statistics of interest change under optimal taxation of pre-college education

spending alongside progressive bequest taxation.
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