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Radical and Incremental Innovation: 
The Roles of Firms, Managers, and Innovators†

By Daron Acemoglu, Ufuk Akcigit, and Murat Alp Celik*

We investigate the determinants of radical (“creative”) innovations 
that break new ground in knowledge creation. We develop a model 
focusing on the choice between incremental and radical innova-
tion and on how managers of different ages and human capital are 
sorted across firms. Firm- and patent-level evidence reveals that 
firms that are more “open to disruption” are significantly more 
likely to engage in radical innovation and hire younger managers 
and inventors with a comparative advantage in radical innovation. 
However, once the effect of the sorting is factored in, the (causal) 
impact of manager age on creative innovations, though positive, is 
small. (JEL D22, L26, M10, M14, O31, O34)

Radical (creative) innovations play an important role in economic growth not 
just because of their direct contributions to productivity but also because fur-

ther innovations can build on them. Though there are currently more than half a 
million patents granted by the US Patent and Trademark Office (USPTO) per year, 
only a handful make a fundamental contribution to society’s knowledge, and a small 
fraction account for the bulk of the value created.1 For example, within the field 
of drugs and medical inventions, which generated 217,001 patents between 1976 
and 2001, the median number of citations within the next 5 years was 3 (indicating 
that only a few other innovations built on them). However, a few patents are much 
more transformative and also receive many more citations. One was ArthroCare 
Corporation’s 1998 patent for “systems and methods for selective electrosurgical 

1 See, among others, Trajtenberg (1990); Harhoff et al. (1999); and Sampat and Ziedonis (2005) on the relation-
ship between citations and patent quality.
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treatment of body structures,” which improved a variety of existing surgical pro-
cedures and devices used, inter alia, in arthroscopy, neurology, cosmetics, urology, 
gynecology and laparoscopy/general surgery, and received 50 citations in the next 5 
years. Similarly, in computer and communications, the median number of citations 
within the next 5 years in this period is 6, but Sun Microsystems Inc.’s 1994 patent 
for “method for extracting profiles and topics,” which was instrumental in introduc-
ing the HTML hypertext system, received 473 citations within the 5 years.

Where do radical innovations come from? In this paper, we investigate one aspect 
of this question, focusing on the roles of firms, managers, and inventors, and the 
contribution of younger managers and inventors and their sorting to firms that have 
a comparative advantage in radical innovations.

We first provide a simple model of the interplay between firms that are het-
erogeneous in terms of their ability to undertake radical innovation and manag-
ers. In our model, all firms can engage in incremental innovation by building on 
their existing  leading-edge products. In addition,  high-type firms can also attempt 
a radical innovation, which involves combining diverse ideas to generate a tech-
nological improvement in a new area. We interpret  high-type firms as those with a 
“corporate culture” that is open to radical ideas and disruption, though there may 
be other aspects that make some firms more successful in radical innovations.2 We 
also assume that young managers who have more recently acquired general skills 
(or are less beholden to a particular type of product or technology) have a compar-
ative advantage in radical innovation, and in consequence, will be hired by firms 
pursuing radical innovations. In our model, though incremental innovations also 
increase productivity, it is the radical innovations that are the engine of growth. 
This is because incremental innovations in a particular “technology cluster” run into 
diminishing returns (as in Akcigit and Kerr 2018 or Abrams, Akcigit, and Grennan 
2018), while radical innovations create new technology clusters and enable another 
series of incremental innovations.

Our model predicts a  reduced-form  cross-sectional relationship between man-
ager age and radical innovation. But this relationship does not correspond to the 
causal effect of manager age on radical innovations because  high-type firms tend to 
hire young managers, and thus such  cross-sectional relationships also capture the 
“sorting” channel. Indeed, in our model, young managers sort to firms that are both 
 high type and willing to undertake radical innovations.3 These forces can be seen 
from the longitudinal predictions of the model: firms that hire younger managers 
should subsequently have more radical innovations (for hiring a young manager 
is associated either with a change in a firm’s type or a change in the firm’s innova-
tion strategy as it runs out of productive incremental innovation opportunities). But 

2 A natural interpretation (which we favor) is to identify these  high-type firms with Joseph Schumpeter’s (1934) 
“creative agents” (firms, managers, entrepreneurs, and inventors) that are open to disruptions and have the “men-
tal freedom” to deviate from existing technologies, practices, and rules of organizations and societies in order to 
engage in “disruptive innovations” (pp.  86–94). Nevertheless, there are other aspects that make some firms have a 
comparative advantage in radical innovations, and our model does not take a position on the exact source of this 
difference.

3 Interestingly, in the examples of major innovations mentioned above, these were produced by companies with 
unusually young leadership. The average age of top managers at ArthroCare Corporation was only 41 at the time, 
and 43 at Sun Microsystem (compared to an average age of 51 among Compustat companies).
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because  high-type firms do not immediately hire a young manager and switch to 
radical innovations, the increase in radical innovations typically precedes the hiring 
of a younger manager.

The model clarifies that radical innovations generate higher-quality (more  highly 
cited) patents and tend to be more general in terms of the range of citations they 
receive (because they are expanding into new areas). This provides us with a strat-
egy to measure the creativity of innovations and investigate the empirical implica-
tions of the model.

Our theoretical framework also predicts another relationship we investigate 
empirically: products with higher sales will encourage  high-type firms to pursue 
incremental innovations that build on their existing product lines, and those with 
many patents will tilt things in favor of radical innovations (because of diminishing 
returns).

The bulk of our paper is devoted to an empirical study of these ideas. We inves-
tigate whether companies with younger managers, which is in part a proxy for 
 high-type firms (or those with greater openness to disruption), engage in more rad-
ical and creative innovations. Our empirical work uses several different measures 
of radical innovations, all computed from the United States Patents and Trademark 
Office (USPTO) data. These are innovation quality, measured by the average num-
ber of citations per patent; fraction of superstar innovators, which corresponds to 
the fraction of patents associated with an innovator classified as a “superstar” on the 
basis of the number of citations; tail innovations, which we measure as the fraction 
of patents of a company that are at the  ninety-ninth percentile of the overall citations 
distribution relative to those that are at the median, thus capturing the likelihood of 
receiving a very high number of citations normalized by the “median” number of 
citations; and generality index, constructed by Hall, Jaffe, and Trajtenberg (2001), 
which measures the dispersion of the citations that a patent receives from different 
technology classes.

Our empirical results provide nuanced support for the role of firms, manag-
ers, and innovators in radical innovations. On the one hand, we establish a robust 
 cross-sectional correlation between CEO age and all of our measures of  firm-level 
radical innovation (with or without a variety of  firm-level controls). In summary, 
firms that tend to employ younger CEOs receive a greater number of citations per 
patent; have a greater fraction of their patents generated by superstar innovators; 
have more tail innovations, which are at the very high percentiles of the citations 
distribution; and have more general patents. We also find similar results when we 
focus on “ within-firm” variation generated by CEO changes.

On the other hand, our results suggest that much of this relationship is due to 
the greater innovativeness of  high-type firms (for example, because of their greater 
openness to destruction and new ideas), while younger managers have a positive but 
much smaller effect. First, consistent with our theory, we find that firms switch to 
radical innovation even before they hire a younger manager. Second, when we use 
the structure of our model in conjunction with the  reduced-form patterns in the data 
to estimate the causal effect of young managers on radical innovation, our estimates 
are typically small—younger managers accounting for about 1–7 percent of the total 
amount of radical innovation in the economy.



202 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS JULY 2022

We further shed light on the role of innovators in the innovation process using the 
 patent-level variation. Our estimates here indicate that younger CEOs tend to work 
with younger inventors and that younger inventors are significantly more creative 
and likely to generate radical innovations.

Finally, we investigate our model’s prediction that firms with greater sales and 
with fewer patents should be less willing to engage in radical innovations by simul-
taneously including interactions of CEO age with (log) sales and (log) number of 
patents of the firm in our regressions. The results from this exercise support the 
notion that CEO age interacts negatively with sales and positively with the number 
of patents.4

Our paper is related to several literatures. First, we build on and extend the liter-
ature on the interplay between micro and macro aspects of innovation, in particular 
Klette and Kortum (2004), by including a choice between radical and incremen-
tal innovations and by incorporating the dimension of matching between managers 
of different vintages of human capital and type of innovation.5 Empirical work in 
this area (e.g., Foster, Haltiwanger, and Krizan 2001; Lentz and Mortensen 2008; 
Akcigit and Kerr 2018; Hurst and Pugsley 2011; Syverson 2011; Kogan et al. 2017; 
Acemoglu et  al. 2018) focuses on R&D, patent, and productivity dynamics. We 
depart from this literature both because of our focus on radical (creative) innova-
tions and because we present a detailed analysis of the relationship between creativ-
ity of innovations and manager age.

Second, MacDonald and Weisbach (2004); Gorodnichenko and Roland (2017); 
and Fogli and Veldkamp (2021) are closely related to our work. MacDonald and 
Weisbach construct an overlapping generations model in which each generation 
makes  technology-specific human capital investments. They show that younger 
agents are the ones who invest in human capital complementary to new technolo-
gies. Their framework does not incorporate innovations and thus has no distinction 
between radical and incremental innovations. Gorodnichenko and Roland draw a 
link between innovation and individualism but focus on aggregate measures of pro-
ductivity, such as TFP or labor productivity at the country level. In contrast, we 
start with a microeconomic model of how firms choose their innovation strategies 
and how managers of different ages endogenously sort across different types of 
firms, and then exploit  firm-level data on the creativity of innovations constructed 
from patent citations. Fogli and Veldkamp emphasize the role of “individualistic” 
social networks in the diffusion of new technologies and explore how exposure 
to different types of diseases is associated with  cross-country variation in societal 
network structures.

Third, our work is linked to the small literature on age and creativity. Galenson 
and Weinberg (2000, 2001); Weinberg and Galenson (2019); Jones and Weinberg 

4 The working paper version of our work presented supporting  cross-country evidence, showing that the average 
age of the top managers of the 25 largest listed companies in a country is associated with greater average citations 
per patent, tail innovations, superstar fraction, and generality of innovations, controlling for the total number of 
patents, GDP, and human capital variables at the country level. This manager age variable is strongly correlated with 
individualism indices (e.g., from Hofstede 2001).

5 This matching aspect is common with theoretical analyses of the role of managers, in particular, Lucas (1978); 
Garicano (2000); and Garicano and  Rossi-Hansberg (2004).
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(2011); and Jones (2010) provide evidence that a variety of innovators and top sci-
entists are more creative early in their careers, but they also acquire other types 
of human capital (perhaps generating different types of creativity) later on. Jones 
(2009) develops a model in which scientists have to spend more time mastering a 
given area and have to work in teams because the existing stock of knowledge is 
growing and thus becoming more difficult to absorb and use.6

Fourth, our work is related to the literature pioneered by Bertrand and Schoar 
(2003) and Bloom and Van Reenen (2007, 2010), which investigates the relationship 
between CEO and manager characteristics and firm performance. Benmelech and 
Frydman (2015), for example, show that military CEOs pursue more conservative 
investment and financial strategies (lower investment in R&D), are less likely to be 
involved in financial fraud, and perform better during times of distress. Bennedsen, 
Pérez-González, and Wolfenzon (2020) demonstrate that the death of a CEO or 
shocks to the CEO that potentially affect her focus (death of an immediate family 
member) impact profitability or operating returns. Also noteworthy in this context 
is Barker and Mueller (2002), who show that firms with younger CEOs spend more 
on R&D (though this pattern does not show up in our sample).7

The rest of the paper is organized as follows. Section I presents our motivating 
model. Section II describes our data. Section III presents our main empirical results. 
Section  IV concludes, while Appendix A contains the proofs from Section  I and 
some supplementary materials. Online Appendix B, which is  not for publication, 
presents additional figures, empirical results, and discusses the possible microfoun-
dations of the critical assumptions we make in the theoretical model.

I. Motivating Theory

In this section, we provide a simple model of radical and incremental innovations 
to motivate both the conceptual underpinnings of our approach and some of our 
empirical strategies. Further discussion of assumptions and microfoundations of the 
model are provided in online Appendix B1.

A. Production

We consider a  continuous-time economy in which discounted preferences are 
defined over a unique final good as   ∫ 0  

∞    e   −ρt  ((C  (t)   1−ν  − 1)/(1 − ν)) dt, where  ρ > 0  
is the discount rate,  C(t)  is consumption at time  t , and  ν  is the inverse of the inter-
temporal elasticity of substitution. The final good is produced using labor and a 

6 See also Sarada and Tocoian (2019), who investigate the impact of the age of the founders of a company on 
subsequent performance using Brazilian data; Azoulay, Zivin, and Manso (2011), who document the impact of 
changes in incentives driven by large academic awards and grants on creativity; and Azoulay, Zivin, and Wang 
(2010), who investigate the impact of the death of a very productive  coauthor on academic productivity. There is 
also an extensive literature in social psychology, mostly using survey and experimental evidence, on age and various 
attitudes both in general and in business. See, e.g., the survey by Walter and Scheibe (2013).

7 See also Bandiera et al. (2020), who use CEO diary data and machine learning techniques to differentiate 
between “leader” CEOs (i.e., those primarily involved in communication and coordination activities) and “man-
ager” CEOs (i.e., those primarily involved in  production-related activities). They show that firms with leader CEOs 
are larger and more productive on average.
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continuum of intermediates, each located along a circle,   , of circumference 1, via 
the constant elasticity of substitution production function,

(1)  Y (t)  =   1 _ 
1 − β    ( ∫   

 

     q j     (t)    β   k j     (t)    1−β  dj)   L   β  ,

where   k j  (t)  denotes the quantity and   q j  (t)  the quality (productivity) of the 
 leading-edge intermediate  j  used in final good production at time  t , while  L  is the 
total amount of production labor, which is supplied inelastically. Consumption is 
given as  C(t) = Y(t) − K(t) , where  K(t)  denotes total spending on intermediates.

We follow Klette and Kortum (2004) in defining a firm as a collection of  leading-edge 
technologies. A perfectly enforced patent on each  leading-edge technology is held by 
a firm, which can produce at constant marginal cost  γ  in terms of the final good. 
Because costs and revenues across intermediates are independent, a firm will choose 
price and quantity to maximize profits on each of its intermediates (which we also 
refer to as product lines). In doing so, it will face an  iso-elastic inverse demand derived 
from equation (1), which can be written, suppressing time arguments, as

(2)   p j   =  L   β   q  j  
β   k  j  

−β , ∀ j ∈  .

The  profit-maximization problem of the firm with the  leading-edge technology for 
intermediate  j  can then be written as

  Π ( q j  )  =  max  
 k j  ≥0

  
 
    { p j    k j   − γ  k j  }  ∀ j ∈  subject to  (2)  .

The  first-order condition of this maximization problem implies a constant markup 
over marginal cost,   p j   = γ / (1 − β ) , and thus

(3)   k j   =   [ (1 − β)  / γ]    
  1 _ β  
  L  q j   .

Equilibrium profits for a product line with technology   q j    are

  Π ( q j  )  = β   [ (1 − β)  / γ]    
  
1−β _ β  

  L  q j  

 ≡ π  q j    ,

where the second line defines the constant  π .
For future reference, we denote the current period’s knowledge stock—current 

average technology—by

(4)    q –  t   ≡  ∫   
 

     q jt   dj .
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B. Managers

In addition to workers, the economy is populated by managers, who both play an 
operational role (reducing costs for firms) and manage innovation.

Managers enter and exit the economy following a stationary Poisson birth and 
death process so that the measure of managers,  M , and their age distribution is con-
stant over time. We index a manager by her birth date  b , or equivalently by her 
age,  a = t − b . Denoting the death rate of managers by  δ , the fact that the measure 
of managers is constant at  M  implies that the age distribution of managers is simply 
given by an exponential distribution, i.e., the fraction of managers who are below 
the age  a  is  1 −  e   −δa  .8

A manager acquires the useful knowledge associated with the average technology 
in the period in which she is born (time  b ), giving her a knowledge base of

    q –  b   ≡  ∫   
 

     q jb   dj .

Managers will be hired by monopolists to manage production and innovation 
on their product lines. In equilibrium, they will be paid a wage   w b,t    as a function 
of the current period’s average technology,    q –  t   , and their knowledge,    q –  b   . We assume 
that  M < 1 , and this implies that the measure of managers is less than the measure 
of product lines in the economy, so some product lines will not use a manager. 
This simplifies the analysis by providing a convenient boundary condition for the 
determination of equilibrium wages of managers. We also assume that  M  is not too 
small, which will ensure that all firms that need a manager for a “radical innova-
tion,” as described next, are able to hire one (one can take  M → 1  without any loss 
of generality).

C. Corporate Culture and Innovation Dynamics

The economy is populated by two types of firms, with firm type denoted by 
 θ ∈ { θ H  ,  θ L  }  and   θ H   >  θ L   . Firm type does not affect productivity directly but influ-
ences the success of radical innovations. In particular,  high-type firms ( θ =  θ H   ) 
are those that have a comparative advantage in radical innovations, for example, 
because they have corporate cultures that are open to disruption. In contrast, we will 
suppose that  low-type firms ( θ =  θ L   ) are incapable of engaging in radical innova-
tions, which is captured by setting   θ L   = 0 . Firm type is initially determined upon 
entry (as described in the next subsection). Thereafter, a  low-type firm switches to 
high type at flow rate  φ ∈ (0, 1) .9

The productivity of each intermediate product is determined by its location along 
a quality ladder in a given product line. In addition, as noted above and following 
Klette and Kortum (2004), each  leading-edge technology gives the firm an opportu-
nity for further innovation. Innovation dynamics at the firm level are determined by 
whether the firm pursues an incremental innovation or a radical innovation strategy.

8 It is also straightforward to see that denoting the birth rate of managers by   δ   birth  ,  M =  δ   birth  / δ .
9 We assume that there are no switches from high type to low type to simplify the expressions and the analysis.
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Incremental Innovation.—Both types of firms can engage in incremental innova-
tion, which improves the productivity of a product line within the current technology 
cluster. A technology cluster here refers to a specific family of technologies for that 
product line. Because incremental innovations take place within this technology 
cluster, they run into diminishing returns. We model this by assuming that the addi-
tional productivity improvements generated by an innovation are decreasing in the 
number of prior incremental innovations within a technology cluster. Namely, the  
nth  incremental innovation in a technology cluster improves the current productivity 
of product line  j  by a step size   η n  ( q j  ,   q –  t  ) , where   q j    is the current productivity of the 
technology,    q –  t    is the current period’s technology, and

(5)   η n   ( q j  ,   q –  t  )  =  [κ   q –  t   +  (1 − κ)   q j  ] η  α   n  ,

with  α ∈ (0, 1) ,  η > 0 , and  κ ∈ (0, 1) . This functional form implies two features. 
First, each innovation builds both on the current productivity of the product line 
where it originates, with weight  1 − κ , and on average technology,    q –  t   , with weight  κ . 
Second, productivity gains from incremental innovations decrease geometrically, at 
the rate  α , in the number of prior incremental innovations in the technology cluster.

We assume that all firms (regardless of their type) can successfully innovate 
incrementally at the exogenous rate  ξ > 0 .

Radical Innovations.— High-type firms can also undertake radical innovations, 
which combine the current technology of the product line the firm is operating, the 
knowledge base of the manager, and the available knowledge stock of the econ-
omy to innovate in a new area (creatively destroying the  leading-edge technology of 
some other firm). Similar to Weitzman’s (1998) approach based on recombination, 
this combination of knowledge bases creates a new technology cluster.

A radical innovation originating from a particular product line initiates a new tech-
nology cluster in a different product line (and the innovating firm will still keep its 
original product line). The creation of a new technology cluster provides the innovator 
with the opportunity to start a new series of incremental innovations. Because radical 
innovations are not directed and each firm controls an infinitesimal fraction of all 
products, the likelihood that it will be the firm itself radically innovating over its own 
product is zero.10 Thus radical innovations are associated with “Schumpeterian cre-
ative destruction.” We next describe the technology for radical innovations.

A successful radical innovation leads to an improvement over the product line 
uniformly located on the circle    and thus generates creative destruction. If there is a 
successful radical innovation over a product line with technology   q j   , this leads to the 
creation of a new  leading-edge technology (now under the control of the innovating 
firm and manager), with productivity

   q  j  
0  =  q j   +  η 0    ,

10 It may be more plausible to assume that radical innovations also take place over a range of products that are 
“technologically close”  to the knowledge base of the innovator. Provided that there is a continuum of products 
within this range, this modification has no impact on any of our results.
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where the superscript 0 designates the fact that a radical innovation initiates a new 
cluster with no prior incremental innovations.

Managers’ Role.—For each of their active product lines, firms hire managers who 
influence their revenues in two ways. First, a manager of age  a = t − b  contrib-
utes    q –  t   f (a)  to the revenues of a firm when the aggregate technology level is    q –  t    (e.g., 
by reducing costs).11 We presume (but do not need to impose) that  f  is increasing, 
so that more experienced managers are better at cost reductions. If the firm hires no 
manager, then it does not receive this additional revenue. Second, a manager affects 
the flow rate of success for firms attempting a radical innovation, as we describe 
next.

A firm of type  θ  has a baseline flow rate of radical innovation (regardless of 
whether it is pursuing radical or incremental innovations) equal to  ψΛθ . In addition, 
if it pursues a radical innovation strategy, hires a manager with knowledge    q –  b   , and 
the current technology in the economy is    q –  t   , it will generate a flow rate of radical 
innovation equal to

(6)  Λθ   q –    a  ,

where

    q –    a  ≡   q –  b   /   q –  t   

is the relative average quality of managers of age  a , and  Λ ∈ (0, 1]  (and the super-
script, rather than a subscript, here emphasizes that this is a ratio of two averages). 
This specification confirms that  low-type firms, with   θ L   = 0 , cannot engage in rad-
ical innovations—i.e., both  ψΛ  θ L    and  Λ  θ L    are equal to zero.

Since both high- and  low-type firms have the same rate of success,  ξ , when they 
attempt incremental innovations, (6) implies that  high-type firms and young manag-
ers have a comparative advantage in radical innovation—only  high-type firms can 
engage in radical innovations, and younger managers contribute to the flow rate of 
radical innovation with  high-type firms.

The parameter  Λ  captures the role of institutional or social sanctions on radical 
innovations. Such sanctions may prevent the implementation of certain radical inno-
vations, thus making successful innovations less likely.12

We close the model by assuming that new firms enter at the exogenous flow 
rate  x > 0 , and entry corresponds to a (radical) innovation over an existing 
product line uniformly at random. We further assume that a firm’s type is also 
drawn at random following entry: a successful entrant is  high type,  θ =  θ H   , with 

11 We model this contribution as an additive element in the revenues of the firm so as not to influence the monop-
oly price and quantity choices of the firm via this channel.

12 In the context of our modeling of product lines along the circle   , we may assume that such sanctions permit a 
firm operating product line  j  to successfully innovate over technologies that are sufficiently close to itself. Suppose, 
for example, that  j  may be allowed to innovate only on product lines that are at most a distance  Λ  from itself. Then 
the case of no restrictions would be  Λ = 1 / 2 , so that radical innovations over any product lines on the circle    
are possible, while  Λ < 1 / 2  would correspond to restrictions and thus lower the likelihood of successful radical 
innovations.
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probability  ζ ∈ (0, 1) , and is  low type,  θ =  θ L    ( =0 ), with the complementary 
probability,  1 − ζ . Thereafter, firm type evolves according to the Markov chain 
described above.

D. The Value of Innovation

Though firms in this economy have a portfolio of product lines and thus the pres-
ent discounted value of the profits of a firm will depend on this exact portfolio and 
its evolution, the structure of the equilibrium is greatly simplified because the max-
imization problem regarding each product is independent of the rest of the portfolio 
(as in related models such as Klette and Kortum 2004 and Acemoglu et al. 2018). 
More formally, let us define   W s  (   →  q f   ,   

→  n f    )  (for  s ∈ {H, L} ) as the value of a firm with a 
vector of products    →  q f    = { q f, j 1    ,  q f, j 2    , …,  q f, j  m f    

   },  with associated number of incremental 
innovations    →  n f    = { n f, j 1    ,  n f, j 2    , …,  n f, j  m f    

   } .13 Thanks to this independence property, as 
we show in Appendix A, firm values satisfy

(7)   W s   (  →  q f   ,   
→  n f   )  =   ∑ 

m=1
  

 m f  

     V s   ( q j  , n)  ,

where   V s  ( q j  , n)  is the (franchise) value of a product line of productivity   q j    with  n  
incremental innovations that belongs to a firm of type  s ∈ {H, L}  given by

(8)   r  V L   ( q j  , n)  −   V ̇   L   ( q j  , n)  =  max  
a
  

 
   {π  q j   +   q –  t    f (a)  −  w a,t  } 

 + ξ [ V L   ( q j   +  η n+1  , n + 1)  −  V L   ( q j  , n) ] 

 − τ  V L   ( q j  , n)  + φ [ V H   ( q j  , n)  −  V L   ( q j  , n) ]  ,

and

(9)     r  V H   ( q j  , n)  −   V ̇   H   ( q j  , n) 

       = max {π  q j   +  max  
a
  

 
   {  q –  t    f (a)  −  w a,t  

 + ξ [ V H   ( q j   +  η n+1  , n + 1)  −  V H   ( q j  , n) ] } ;

 π  q j   +  max  
a
  

 
   {  q –  t    f (a)  + Λ  θ H     q –    a  E  V H   (  q –  t  )  −  w a,t  } } 

 − τ  V H   ( q j  , n)  + ψΛ  θ H   E  V H   (  q –  t  )  .

Here  r  is the equilibrium interest rate,  τ  is the rate of creative destruction in the 
economy, and  E  V H  (  q –  t  )  denotes the expected value of a radical innovation when the 
aggregate technology level is    q –  t   . The form of these value functions is intuitive and 
instructive about the workings of the model. In (8), a  low-type firm’s value from 

13 Here and elsewhere, we suppress time as an explicit argument of the value functions to simplify notation.



VOL. 14 NO. 3 209ACEMOGLU ET AL.: RADICAL AND INCREMENTAL INNOVATION

a product with productivity   q j    that has previously had  n  incremental innovations 
depends on the flow of profits,  π  q j   +   q –  t   f (a) −  w a,t   , and the additional value from 
an incremental innovation, which arrives at the flow rate  ξ  and increases the produc-
tivity of the firm with step size   η n+1   . In addition, the second line of (8) captures the 
fact that the value from this product will disappear at the rate of creative destruction 
in the economy,  τ , representing the replacement of this product by a  higher-quality 
one, and the value of the firm may increase because it may transition to high type at 
the flow rate  φ . A  high-type firm’s value in (9) is similar except that it involves an 
additional choice between incremental innovation and radical innovation, as repre-
sented by the inner maximization.

E. Stationary Equilibrium with  κ = 1 

We now characterize the stationary equilibrium of this economy. We start with 
the case where  κ = 1  in equation (5)—so that all current innovations build on cur-
rent technology,    q –  t    (and not on the current productivity of the existing technology 
cluster). This assumption considerably simplifies the analysis, and we return to the 
general case where  κ < 1  below.

Characterizing the Stationary Equilibrium.—A stationary equilibrium is defined 
as an equilibrium in which aggregate output,   Y t   , grows at a constant rate  g , and the 
distribution of product lines between high- and  low-type firms and over the prior 
number of incremental innovations remains stationary.

As noted above, firms decide the age of the manager to hire for each of the product 
lines they are operating and whether to engage in a radical or incremental innova-
tion. Since some firms will not hire managers (as  M < 1 ), all firms not attempting 
a radical innovation on a product line must be indifferent between hiring and not 
hiring a manager for that product line, which implies that the equilibrium wage 
for managers, employed by firms engaged in incremental innovations, satisfies the 
boundary condition

(10)   w a,t   =   q –  t   f (a)  .

We next turn to the value of a product line operated by a  high-type firm, (9). 
Because of the comparative advantage of young managers for radical innovation in 
(6), there will exist a maximum age   a   ∗   such that only managers below this age will 
work in firms attempting radical innovation. Moreover, the maximization over the 
age of the manager in (9) implies that firms engaged in radical innovation must be 
indifferent between hiring any manager younger than   a   ∗  , and thus,

    q –  t   f ( a   ∗ )  + Λ  θ H     q –     a   ∗   E  V H   (  q –  t  )  −  w  a   ∗ ,t   =   q –  t   f (a)  + Λ  θ H     q –    a  E  V H   (  q –  t  )  −  w a,t   

 for all

  a <  a   ∗  .
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The boundary condition, (10), implies that the oldest manager hired for radical 
innovation earns   w  a   ∗ ,t   =   q –  t   f ( a   ∗ ) . Hence,

(11)   w a,t   =  { 
  q –  t   f (a) 

  
for a ≥  a   ∗ 

     
  q –  t   f (a) + Λ  θ H  [  q –    a  −   q –     a   ∗   ]E  V H  (  q –  t  )

  
  for a <  a   ∗ 

    .

This wage schedule highlights that younger or older managers might be paid more 
(this will depend on the  f  function): younger managers have a comparative advan-
tage in radical innovation, but older managers might be more productive in operat-
ing firms.14

The next proposition provides the characterization of the stationary equilibrium. 
It is important to note that  low-type firms ( θ =  θ L   ) always hire “old” managers 
(those with  a >  a   ∗   or  b <  b  t  

∗  ), pursue incremental innovations, and never gener-
ate radical innovations.

PROPOSITION 1: Let   λ n    denote the probability that a  high-type firm ( θ =  θ H   ) pur-
sues a radical innovation on a product line with  n  incremental innovations. There 
exists an integer   n   ∗   such that:

 (i)  high-type firms pursue incremental innovations,   λ n   = 0 , on product lines 
with  n <  n   ∗   prior incremental innovations and hire “old” managers (those 
with  a >  a   ∗   or  b <  b  t  

∗  );

 (ii) they pursue radical innovations,   λ n   = 1,  on product lines with  n >  n   ∗  ; and

 (iii) they pursue radical innovations with probability   λ  n   ∗    ∈ [0, 1]  on product 
lines with  n =  n   ∗  .

Whenever they pursue radical innovations,  high-type firms hire “young” manag-
ers (those with  a ≤  a   ∗   or  b ≥  b  t  

∗  ).
A lower  Λ , corresponding to the society being less permissive to radical innova-

tions, will increase   n   ∗   (so that a lower fraction of  high-type firms will pursue radical 
innovation) and will reduce the wages of young managers (because there is less 
demand for the knowledge of young managers).

In addition to providing the expression for the threshold   n   ∗   and proving this prop-
osition, Appendix A also characterizes (and establishes the existence of) a station-
ary equilibrium in this economy. This proposition’s implications are discussed in 
the next subsection. Here we simply note that, because the threshold for switching 
to radical innovation,   n   ∗  , is an integer, equilibrium aggregates are not continuous 
in parameters, and hence, the equilibrium may involve some degree of mixing as 
captured by the fact that   λ  n   ∗    ∈ [0, 1] .

14 The evidence in Galenson and Weinberg (2000, 2001); Weinberg and Galenson (2019); and Jones and 
Weinberg (2011) is consistent with the possibility that either younger or older creative workers might be more 
productive.
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Empirical Implications.—Our empirical work is inspired by Proposition 1. As 
explained above, radical innovations will be associated with greater indices of our 
measures of radical innovations. We will first investigate the  cross-sectional relation-
ship between manager (CEO) age and radical innovations. In these  cross-sectional 
regressions, manager age is taken to be a proxy for  high-type firms (for example, 
those with a corporate culture that is more open to disruption). Therefore, from 
Proposition 1, we expect a negative  cross-sectional relationship between manager 
age and radical innovations. As just stressed, this  cross-sectional relationship does 
not correspond to the “causal effect” of manager age on creativity of innovations 
(which would apply if we varied manager age holding the firm’s corporate culture 
constant); in particular, it also reflects the sorting of younger managers to  high-type 
firms.

Our model’s longitudinal implications—that is, implications about how manager 
age and creativity of innovations vary over time for a firm—shed further light on the 
relative magnitudes of the sorting and the causal effects. To understand these impli-
cations, let us consider the innovation dynamics of firms implied by Proposition 1. 
 Low-type firms always engage in incremental innovations and never generate rad-
ical innovations.  High-type firms may attempt a radical innovation depending on 
how many prior incremental innovations they have had on a product line.

 • For a product line with  n <  n   ∗  , a  high-type firm hires an old manager (or 
keeps its already existing old manager) and pursues an incremental innova-
tion strategy. Given the technology specified above, such a firm still gener-
ates radical innovations at the rate  ψΛ  θ H    .

 • For a product line with  n ≥  n   ∗  , a  high-type firm hires a young manager 
and engages in radical innovation (with probability   λ  n   ∗     for  n =  n   ∗  ). In this 
case, the average rate of radical innovation across product lines where radical 
innovation strategies are pursued can be computed using the fact that the age 
distribution of managers is given by the exponential distribution, as

(12)   ψΛ  θ H   +   1 _ 
F ( a   ∗ ) 

    ∫ 
0
  
 a   ∗ 

  Λ  θ H     q –    a  dF (a)  = ψΛ  θ H   +   
Λ  θ H   δ _ 
g + δ     

 [1 −  e   − (g+δ)  a   ∗  ] 
  _____________  

 [1 −  e   −δ a   ∗  ] 
    .

Now consider a  low-type firm that switches to  high type, and to simplify the dis-
cussion, suppose that it has a unique product line. Then, if this product line has had  
n <  n   ∗   incremental innovations, the firm will continue to pursue an incremental 
innovation strategy   λ n   = 0  and keep its old manager.15 In the process, it will gen-
erate radical/creative innovations at the flow rate  ψΛ  θ H   . When it reaches  n =  n   ∗  , 
it will hire a young manager, switch to a radical innovation strategy with probability   
λ  n   ∗    > 0 , and at that point, its rate of radical/creative innovations will increase, on 
average, from  ψΛ  θ H    to the expression in   (12)   times   λ  n   ∗    . In contrast, if the product 

15 Strictly speaking, this is true under an infinitesimal cost of replacing managers. Otherwise, the firm could fire 
its old manager and hire another old manager, with no impact on our results or discussion here.
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line of the firm at the time of switching to  high type has had  n >  n   ∗   incremental 
innovations, it will immediately hire a young manager, switch to a radical innova-
tion strategy, and generate radical innovations at the flow rate given by   (12)  .

This discussion clarifies that when we focus on the relationship between 
 within-firm changes in manager age and radical innovations, we expect to find 
two regularities. First, when a firm switches from an older to a younger manager, 
this should be associated with an increase  in radical innovations. Second, firms 
that switch from an older to a younger manager should, on average, experience 
an increase in radical innovations even before the switch. We emphasize that even 
this further increase following the switch to a younger manager does not corre-
spond to the causal effect of manager age on radical innovations for two reasons: 
first, these firms will be simultaneously switching to radical innovation and hiring 
a young manager, and second, the increase in the likelihood of radical innovation 
will depend on the exact number of prior incremental innovations and the age of the 
manager hired. For this reason, in Section IIIC below, we estimate the causal effect 
by keeping the type of the firm and the number of prior incremental innovations 
constant and just changing manager age by a given amount.

Finally, though we will not be able to investigate this directly in our empiri-
cal work, the implications of changes in  Λ  are interesting. A lower value of this 
parameter naturally reduces radical innovations and, at the same time, decreases 
the wages of young managers, thus making it look like the society is discriminat-
ing against the young; but in fact, this is a consequence of the society discouraging 
radical innovations.

F. Equilibrium with  κ < 1 

In this subsection, we turn to the general case with  κ < 1 . The structure of the 
equilibrium is similar to the case with  κ = 1 , except that now the switch to radical 
innovation for  high-type firms will depend both on their current productivity and on 
their prior incremental innovations.

PROPOSITION 2: Consider the economy with  κ < 1 . Then, for a product line with 
current quality  q  operated by a  high-type firm, the manager will be younger and 
will pursue radical innovation when the number of prior incremental innovations is 
greater than or equal to   n  t  

∗ (q) , where   n  t  
∗ (q)  is increasing in  q . That is, a  high-type 

firm is more likely to pursue radical innovation when its current productivity is 
lower and the number of its prior innovations in the same cluster is higher.

This proposition thus establishes that in this generalized setup (with  κ < 1 ), 
the main results from Proposition 1 continue to hold, but in addition, we obtain the 
new result that radical innovation is more likely when a  high-type firm has lower 
current productivity (conditional on its prior number of incremental innovations); or 
conversely, for a given level of productivity, it is more likely when there has been a 
greater number of prior incremental innovations. Intuitively, when the baseline pro-
ductivity of a product line is  higher, the benefits of incremental innovations building 
on it are also greater, and a  high-type firm will pursue such incremental innovations 
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for longer before switching to radical innovation. We will investigate this additional 
implication in our empirical analysis as well.16

II. Data and Variable Construction

In this section, we describe the various datasets we use and our data construction. 
We also provide some basic descriptive statistics.

A. Data Sources

USPTO Utility Patents Grant Data (PDP).—The patent grant data are obtained 
from the NBER Patent Database Project (PDP) and contain data for all 3,210,361 
utility patents granted between the years  1976–2006 by the USPTO. This dataset 
includes extensive information on each granted patent, including the unique patent 
number, a unique identifier for the assignee, the nationality of the assignee, the 
technology class, and backward and forward citations in the sample up to 2006. 
Following a dynamic assignment procedure, we link this dataset to the Compustat 
dataset, which we next describe.17

Compustat North American Fundamentals.—We draw our main sample from the 
Compustat (Standard and Poor’s 2012) for publicly traded firms in North America. This 
dataset contains balance sheets reported by the companies annually between 1950 and 
2012. It comprises 29,378 different companies and 390,467 company × year obser-
vations. The main variables of interest are net sales, employment, firm age (defined as 
time since entry into the Compustat sample), SIC code, R&D expenditures, total lia-
bilities, net income, and plant property and equipment as a proxy for physical capital.

Executive Compensation Data (Execucomp).—Standard and Poor’s Execucomp 
provides information on the age of the top executives of a company starting from 
1992. We use information on CEO age or the average age of (top) managers of a 
company to construct proxies for comparative advantage for radical innovations or 
openness to disruption at the firm level.18

The Careers and  Coauthorship Networks of US Patent Inventors.—Extensive 
information on the inventors of patents granted in the United States between years 
 1975 and 2008 is obtained from Lai et  al.’s (2014) dataset. These authors use 
inventor names and addresses as well as patent characteristics to generate unique 
inventor identifiers, upon which we heavily draw. Their dataset contains 8,031,908 
observations at the patent × inventor level and 2,229,219 unique inventors and can 
be linked to the PDP dataset using the unique patent number assigned by the USPTO.

16 This result is related to the idea of “disruptive innovations”  proposed in Christensen’s The Innovator’s 
Dilemma (1997). Our result clarifies that our potential answer to the innovator’s dilemma, consistent both with 
Arrow’s (1962) replacement effect and the results presented below, is that successful firms with higher sales have 
more to fear from disruptive innovations and tend to retrench and become less open to creative innovations.

17 Details on the assignment procedure are provided at https://sites.google.com/site/patentdataproject/.
18 We drop observations where reported CEO age is less than 26.

https://sites.google.com/site/patentdataproject/


214 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS JULY 2022

B. Variable Construction

Innovation Quality.—Our baseline measure of innovation quality is the number 
of citations a patent received as of 2006. We use the truncation correction weights 
devised by Hall, Jaffe, and Trajtenberg (2001) to correct for systematic citation dif-
ferences across different technology classes and for the fact that earlier patents will 
have more years during which they can receive citations. The average innovation 
quality of a company in a year is computed as the average number of citations of 
patents the company applied for in that year.

Superstar Fraction.—A superstar inventor is defined as an inventor who sur-
passes his or her peers in the quality of patents generated as observed in the sample. 
A score for each unique inventor is generated by calculating the average quality of 
all the patents in which the inventor took part. All inventors are ranked according 
to this score, and the top 5 percent are considered to be superstar inventors. The 
superstar fraction of a company in a year is calculated as the fraction of patents 
with superstar inventors in that year (if a patent has more than one inventor, it gets a 
fractional superstar designation equal to the ratio of superstar inventors to the total 
number of inventors).

Tail Innovations.—The tail innovation index is defined as the fraction of a firm’s 
patents that receive more than a certain number of citations. Namely, let   s ft  (p)  
denote the fraction of a firm’s patents that are above the  pth  percentile of the year  
t  distribution according to citations. Our baseline tail innovation index,   Tail ft   (p) , is 
simply   s ft  (0.99) /  s ft  (0)  and thus measures the fraction of patents by firm  f  at time  
t  with citations above the  ninety-ninth percentile. As an alternative measure, we 
also consider   Tail ft   (p) =  s ft  (p) /  s ft  (0.50) , where  p > 0.50 . By including   s ft  (0.50)  
in the denominator, this alternative measure focuses on whether controlling for their 
“average” innovation output, some companies generate innovations with very high 
citations. We also consider our baseline index with  p = 0.90  as yet another alterna-
tive measure for robustness.

Generality and Originality.—We also use the generality and originality indices 
devised by Hall, Jaffe, and Trajtenberg (2001). Let  i ∈ I  denote a technology class 
and   s ij   ∈ [0, 1]  denote the share of citations that patent  j  receives from patents in 
technology class  i  (of course with   ∑ i∈I  

 
     s ij   = 1 ). Then for a patent  j  with positive 

citations, we define   Generality j   = 1 −  ∑ i∈I  
 
     s  ij  

2    . This index thus measures the dis-
persion of the citations received by a patent in terms of the technology classes of 
citing patents. Greater dispersion of citations is interpreted as a sign of greater gen-
erality. The originality index is defined similarly except that we use the citations that 
a patent gives to other patents.

C. Sample and Descriptive Statistics

Our baseline analysis focuses on an unbalanced firm sample comprised of 7,170 
observations from 1,259 firms between 1992 and 2004. Our data on CEO age do not 
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extend before 1992, and we cannot go further than 2004 since our patent citation 
data end in 2006 and we need at least two  postgrant years for citation analysis. We 
also study a larger patent sample of 318,007 patents (from 1,195 distinct firms).

Panel A of Table 1 provides descriptive statistics for our firm and patent samples. 
Since we focus on regressions weighted by the number of patents held by a com-
pany, all statistics are weighted by the number of patents as well. We multiply our 
indices for tail innovation, superstar fraction, generality, and R&D intensity by 100 
for ease of inspection.

The table shows that average CEO age is  55.3  in our firm sample and  55.7  in our 
patent sample, and there are also substantial variations (standard deviations are  6.8  
in both samples). Panels B and C show that our main measures of creativity of inno-
vations are highly correlated, except for the generality index, which is negatively 
correlated with our tail innovation index and weakly correlated with the others.

Table 1—Summary Statistics

Variable Observations Mean Standard deviation

Panel A. Descriptive statistics
Unbalanced firm sample (annual firm observations,  1992–2004)
CEO age 7,170 55.3 6.85
Average manager age 7,170 52.2 4.38
Innovation quality 7,170 15.9 10.9
Superstar fraction 7,170 9.94 10.8
Tail innovation 7,170 1.71 2.67
Generality 6,286 18.5 9.95
Innovation quality (5 years) 4,606 8.70 5.36
Superstar fraction (best patent) 7,170 33.0 20.0
Tail innovation (99/50) 5,852 3.42 5.41
Originality 7,150 27.1 8.49
log patents 7,170 5.61 1.60
log employment 7,170 3.71 1.51
log sales 7,170 4.14 1.61
Firm age 7,170 35.0 16.3
Profitability 7,170 0.009 1.28
Indebtedness 7,159 0.775 0.843
log physical capital 7,150 7.95 1.68
R&D intensity 5,966 0.018 0.087
CEO change probability (=1 if changed) 5,472 0.128 0.334
CEO age change (unconditional) 5,472 0.011 4.47
CEO age change (conditional on CEO change) 701 −6.72 10.2
Change in innovation quality within firm over time 5,472 −2.48 15.2
Change in superstar fraction within firm over time 5,472 −1.19 13.6
Change in tail innovations within firm over time 5,472 −0.328 7.91
Change in generality within firm over time 4,731 −2.30 14.8

Patent Sample ( 1992–2004)
CEO age 318,007 55.7 6.77
Inventor age 318,007 5.29 4.94
Innovation quality 318,007 18.6 27.6
Tail innovation (above 99) 318,007 18.8 136
Tail innovation (above 90) 318,007 165 371
Generality 264,972 21.9 24.0
log patents 318,007 5.63 1.59
log employment 318,007 3.73 1.49
log sales 318,007 4.15 1.60
Inventor team size 318,007 2.59 1.74
Maximum inventor patents 318,007 23.6 24.6

(continued )
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III. Empirical Results

In our theory, manager age is partly an indicator of a corporate culture that is 
open to disruption (because high-type firms have a comparative advantage in radical 
innovation and so tend to select younger managers) but also has a causal effect on 
radical innovations (since a young manager has a comparative advantage in radi-
cal/creative innovations). Motivated by these theoretical results, we start with the 
 cross-sectional relationship between  firm-level measures of radical innovations and 
manager age.19 We then turn to a more direct investigation of the effect of manager 
age on radical innovations, focusing on “ within-firm” variation. Finally, exploiting 
the timing of the increase in radical innovations following a change in manager age, 
we provide estimates of the structural parameters of the model.

A.  Cross-Sectional Results

Our  cross-sectional results are presented in Tables  2 and  3, online Appendix 
Table B6, and in Figure 1. Our estimating equation is

(13)   y f   = α  m f   +  X  f  ′   β +  δ i (f)    +  ν t   +  ε f    ,

19 Another caveat is that our theoretical results relate manager age at the  product line level to the innovation 
strategy and creativity of innovations, while the bulk of our empirical analysis in this section will be at the firm level, 
focusing on the age of a firm’s CEO (or top managers).

Table 1—Summary Statistics (continued)

Innovation quality Superstar fraction Tail innovation Generality

Panel B. Correlation matrix of firm-level innovation variables
Innovation quality 1.000
Superstar fraction 0.796 1.000
Tail innovation 0.609 0.593 1.000
Generality 0.435 0.141 −0.010 1.000

 
Innovation quality

Tail innovation
(above 99)

Tail innovation
(above 90)

 
Generality

Panel C. Correlation matrix of patent-level innovation variables
Innovation quality 1.000
Tail innovation (above 99) 0.663 1.000
Tail innovation (above 90) 0.696 0.306 1.000
Generality 0.152 0.035 0.099 1.000

Notes: All statistics for the  firm-level samples are weighted by the number of patents of the firm. Innovation qual-
ity is the average number of citations per patent (using the truncation correction weights devised by Hall, Jaffe, and 
Trajtenberg 2001); superstar fraction is the fraction of patents accounted for by superstar researchers (those above 
the ninety-fifth percentile of the citation distribution); tail innovation is the fraction of patents of a firm above the 
 ninety-ninth percentile of the citation distribution divided by all its patents; and the generality index measures the 
dispersion of citations received across  two-digit IPC technology classes, whereas the originality index measures the 
dispersion of citations made by the patent to other patents. CEO age is the age of the CEO, and average manager 
age is the average age of the top management, both from the Execucomp dataset. The unbalanced firm panel is a 
sample of firms from Compustat with at least one year of complete data between 1992 and 2004. Profitability is net 
income over sales. Indebtedness is total liabilities over sales. Physical capital is total net plant, property, and equip-
ment. R&D intensity is R&D expenditures over sales, winsorized at the  ninety-ninth percentile. See the text for the 
definition of other variables and further details.
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where   y f    is one of our measures of radical innovations introduced in the previous 
section (innovation quality, superstar fraction, tail innovation, or generality) for firm  
f  and   m f    is our  firm-level measure of comparative advantage in radical innovation or 
openness to disruption—the average age of company CEOs over our sample win-
dow. In addition,   X f    is a vector of controls, in this case, firm age, log of employment, 
log of sales, and log of total number of patents. Controlling for firm age is partic-
ularly important in order to distinguish the correlation of creativity of innovations 
with manager age from its correlation with firm age. In addition,   δ i( f )    denotes a 
full set of  four-digit main SIC dummies so that the comparisons are always across 
firms within a fairly narrow industry,20 and   ν t    denotes a full set of year dummies. 
Finally,   ε f    is the error term. To start with, we do not include firm fixed effects, and 
for this reason we use average age of CEOs in the specifications and focus on the 
 cross-sectional correlation rather than the  year-to-year variation in CEO age and our 
outcome measures.21 We turn to specifications with fixed effects in Table 4.

Unless otherwise indicated, all of our regressions have one observation per 
firm × year and are weighted with the total patent count of the firm in that year so 
that they put less weight on observations for which our measures of radical innova-
tions are computed from only a few patents. All standard errors are clustered at the 
firm level and are robust against heteroscedasticity.

Different columns of Table 2 correspond to our four different measures of radical 
innovations. Column  1 shows an economically sizable correlation between CEO 
age and our measure of innovation quality (average number of citations per patent). 
The coefficient estimate,  − 0.171  (standard error = 0.075), is statistically signifi-
cant at less than 5 percent and indicates that companies with a younger CEO have 
greater innovation quality. We interpret this pattern as evidence that companies that 

20 All firms in our baseline sample are in one of 283  four-digit SIC industries.
21 Panel A of Table 4 shows very similar, but more precisely estimated, results when the CEO age variable is 

 time-varying (without fixed effects).

Table 2—Baseline  Cross-Sectional Regressions

Innovation quality Superstar fraction Tail innovation Generality

CEO age −0.171 −0.320 −0.079 −0.172
(0.075) (0.132) (0.031) (0.044)

Firm age −0.075 −0.102 −0.015 −0.017
(0.025) (0.036) (0.007) (0.017)

log employment −1.172 −2.246 −0.385 −1.147
(0.852) (1.189) (0.248) (0.654)

log sales 1.453 2.044 0.252 1.281
(0.813) (1.105) (0.229) (0.573)

log patent −0.364 0.008 0.102 −0.067
(0.294) (0.554) (0.078) (0.253)

Observations 7,170 7,170 7,170 6,286

Notes: Weighted  firm-level panel regressions with annual observations with number of patents (in that year) as 
weights. The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The key 
 right-hand-side variable is average CEO age (constant over time). Robust standard errors clustered at the firm level 
are in parentheses. A full set of  four-digit SIC dummies and year dummies (and thus no firm dummies) are included 
as controls. See text and notes to Table 1 for variable definitions.
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are more open to disruption (and willing to hire younger managers) tend to be the 
ones producing more radical innovations. The quantitative magnitudes are sizable 
but plausible. For example, a  1-year decrease in CEO age is associated with a 0.171 
increase in average citations, which is approximately 1.1 percent of the  firm-level 
weighted mean of our innovation quality variable (15.9).

Table 3— Cross-Sectional Regressions—Robustness

Innovation quality Superstar fraction Tail innovation Generality

Panel A. Unweighted
CEO age −0.108 −0.194 −0.042 −0.045

(0.056) (0.073) (0.024) (0.047)

Panel B. Median regression
CEO age −0.200 −0.482 −0.063 0.063

(0.080) (0.070) (0.005) (0.007)

Panel C. No covariates except time and SIC4 fixed effects
CEO age −0.168 −0.336 −0.086 −0.162

(0.073) (0.146) (0.033) (0.045)

Panel D. With SIC2 dummies
CEO age −0.194 −0.374 −0.071 0.009

(0.044) (0.084) (0.021) (0.076)

Panel E. With SIC3 dummies
CEO age −0.191 −0.364 −0.077 −0.068

(0.048) (0.096) (0.024) (0.063)

Panel F. With additional controls
CEO age −0.170 −0.317 −0.077 −0.175

(0.070) (0.126) (0.028) (0.043)

Panel G. With additional controls plus R&D intensity
CEO age −0.175 −0.324 −0.081 −0.171

(0.071) (0.126) (0.028) (0.045)
R&D intensity 0.341 −2.351 1.001 1.118

(2.177) (2.334) (0.769) (1.709)

Panel H. Missing observations as zeros
CEO age −0.115 −0.168 −0.034 −0.104

(0.049) (0.054) (0.017) (0.040)

Panel I. Controlling for self-citation fraction
CEO age −0.118 −0.287 −0.063 −0.157

(0.046) (0.113) (0.020) (0.041)

Notes: Weighted  firm-level panel regressions with annual observations with number of patents (in that year) as 
weights unless stated otherwise. The dependent variables are innovation quality, superstar fraction, tail innovation, 
and generality. The key  right-hand-side variable is average CEO age (constant over time). Each panel is for a dif-
ferent specification. Unless otherwise stated, all regressions control for firm age, log employment, log sales, log 
total patents, year dummies, and  four-digit SIC dummies. Robust standard errors clustered at the firm level are in 
parentheses where applicable. Panel A reports the same regression in Table 2 without weights. Panel B runs median 
regressions following the same design as Table 2, while dropping weights and year and industry dummies. Panel C 
reports a regression without covariates except  four-digit SIC dummies and year dummies. Panels D and E control 
for two- and  three-digit SIC dummies, respectively (instead of the  four-digit SIC). Panel F adds to the specification 
of Table 2 profitability (profit over sales), indebtedness (debt over sales), and log physical capital. Panel G adds to 
the specification of panel F R&D intensity (R&D expenditure over sales). Panel H replaces the missing values for 
dependent variables by zeros, drops log patent count from the controls, and runs unweighted regressions in order to 
extend the sample to firms that do not apply for any patents in a given year. Panel I repeats the regression in panel A 
adding  self-citation fraction as a control. See text and notes to Table 1 for variable definitions.
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The estimated effects of the covariates are also interesting. Firm age is negatively 
associated with innovation quality, suggesting that younger firms are more creative 
(though this pattern is not as robust as the impact of CEO age in other specifications). 
In addition, our measures of radical innovations are uncorrelated with employment 
and sales and are only weakly correlated with the number of patents invented by the 
firm (except for tail innovations). This confirms that our measures of creativity of 
innovations are quite distinct from the total number of patents.22

Column  2 of Table 2 shows a similar relationship with the superstar fraction 
( − 0.320 , standard error = 0.132). This result suggests that younger CEOs tend to 
work with  higher-quality innovators (a relationship we directly investigate in Table 9 
below). Columns 3 and 4 show even more precisely estimated relationships with our 
measures of tail innovations and generality. The implied quantitative magnitudes are 

22 In Table B1 in online Appendix B, we show the same specification as in column 1, but the covariates included 
one at the time. The results are very stable across columns, which is reassuring.

Figure 1. The Averages for Creative Innovation Variables (Innovation Quality, Superstar Fraction, 
Tail Innovations, and Generality) by CEO Age, and the Associated Fitted Line

Notes: The averages are calculated after demeaning the creative innovation variables at the year  ×  industry level. 
The label 40 stands for all ages less than or equal to 40, and 60 stands for all ages greater than or equal to 60. See 
text and notes to Table 1 for variable definitions.

1

2

3

4

T
ai

l i
nn

ov
at

io
ns

40 45 50 55 60
CEO age

Tail innovations by CEO age 
(weighted, demeaned)

5

10

15

20

S
up

er
st

ar
 fr

ac
tio

n

40 45 50 55 60
CEO age

Superstar fraction by CEO age 
(weighted, demeaned)

14

16

18

20

22

In
no

va
tio

n 
qu

al
ity

40 45 50 55 60
CEO age

Innovation quality by CEO age 
(weighted, demeaned)

16

18

20

22
G

en
er

al
ity

40 45 50 55 60
CEO age

Generality by CEO age 
(weighted, demeaned)



220 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS JULY 2022

also a little larger—a 1-year increase in CEO age is associated with, respectively, 
3.2 percent and 4.6 percent increases relative to weighted sample means in these 
two measures.

The patterns in the data underlying the results in Table 2 are depicted in Figure 1, 
which plots the correlation between our four measures of the creativity of inno-
vations and CEO age. To transparently illustrate these relationships, for each of 
our measures, we create deviations from the industry × year means (and group all 
observations with CEO age ≤ 40 or CEO age ≥ 60). The negative relationship 
between CEO age and our four measures is evident. Moreover, these empirical rela-
tionships are well approximated by linear regressions (the fitted lines correspond 

Table 4—Baseline Panel Regressions

Innovation quality Superstar fraction Tail innovation Generality

Panel A.  Time-varying CEO age
CEO age −0.196 −0.260 −0.067 −0.069

(0.045) (0.069) (0.019) (0.034)
Observations 7,170 7,170 7,170 6,286

Panel B. CEO age (fixed effects)
CEO age −0.190 −0.152 −0.049 0.036

(0.044) (0.051) (0.012) (0.029)
Observations 7,170 7,170 7,170 6,286

Panel C. CEO age and lagged CEO age (fixed effects)
CEO age −0.134 −0.103 −0.035 0.031

(0.041) (0.039) (0.013) (0.026)
Lagged CEO age −0.125 −0.101 −0.028 0.019

(0.050) (0.049) (0.016) (0.035)
Observations 5,492 5,492 5,492 4,861

Panel D. CEO age and lagged dependent var (fixed effects)
CEO age −0.098 −0.078 −0.037 0.037

(0.026) (0.030) (0.009) (0.024)
Lagged dependent variable 0.471 0.453 0.214 0.198

(0.033) (0.045) (0.045) (0.042)
Observations  6,076 6,076 6,076 5,293

Panel E. CEO age and lead CEO age (fixed effects)
CEO age −0.115 −0.086 −0.028 0.041

(0.042) (0.048) (0.011) (0.029)
Lead CEO age −0.128 −0.114 −0.035 −0.006

(0.048) (0.044) (0.014) (0.028)
Observations 5,494 5,494 5,494 5,179

Notes: Weighted  firm-level panel regressions with annual observations with number of patents (in that year) as 
weights. The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. Robust 
standard errors clustered at the firm level are in parentheses. All specifications control for log employment, log 
sales, log patents, year dummies, and SIC4 industry fixed effects in panel A and a full set of firm fixed effects in 
panels B to E (and thus firm age and the  four-digit SIC dummies are no longer included). In panels A and B, the key 
 right-hand-side variable is CEO age (in that year). Panel C is identical to panel B except that it also includes a one-
year lag of CEO age as well as current CEO age. Panel D is identical to panel B except that it also includes a one-
year lag of the dependent variable on the  right-hand side. Panel E is identical to panel B except that it also includes 
a  one-year lead of CEO age in addition to current CEO age. See text and notes to Table 1 for variable definitions.
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to a linear regression using these industry × year deviations from means on CEO 
age bins without any other covariates). We show the same relationships when con-
trolling for the same covariates as in Table 2 in Figure B1 in online Appendix B.

Table  3 and online Appendix Table  B6 probe the robustness of our baseline 
 cross-sectional results in different directions and demonstrate that under most rea-
sonable variations, the relationship between manager age and the creativity of inno-
vations is, if anything, even stronger than in Table 2.

Table  3 looks at several different specifications. Perhaps most importantly, 
panel A shows that the results are similar, even if a little smaller, when the regres-
sion is unweighted. Panel  B estimates our baseline specification using a median 
regression, which is less sensitive to outliers. The results are again very similar and 
in fact typically more precisely estimated, confirming that our baseline results are 
not driven by outliers. Panel C, which is the regression analog of Figure 1, shows 
a very similar relationship when we include only the  four-digit SIC dummies and 
year effects. Panels D and E replace the  four-digit SIC dummies in our baseline 
specification with  two-digit and  three-digit SIC dummies (192 and 59 dummies, 
respectively). Panel F goes in the opposite direction and enriches the set of controls; 
in addition to the baseline covariates in Table 2, it includes several other  firm-level 
controls: profitability (income to sales ratio), debt to sales ratio, and log physical 
capital of the firm. The results are virtually the same as those in Table 2 but a little 
more precisely estimated. Panel G, additionally, adds R&D intensity (R&D to sales 
ratio) to the previous specification.23 This is intended to verify that our results can-
not be explained by some firms performing more R&D than others (here the sample 
declines to  5, 907  observations). The estimates are once again very close to those 
in our baseline regressions in Table 2, and the R&D intensity variable itself is not 
significant in any of the columns.

Our baseline regressions are only for firm × year observations with positive patents 
(since our measures cannot be computed when the denominator is zero). Panel H 
verifies that this potential endogenous selection into our sample is not responsible 
for our results. It includes all available firm × year observations, imputing a value 
of zero to all of our measures when a firm does not have any patents in that year. The 
estimated relationship between CEO age and our measures of the creativity of inno-
vations are remarkably similar to the baseline results in this case (with only the tail 
innovation index experiencing a sizable decline in coefficient, which still remains 
statistically significant at 5 percent).

Finally, Panel I takes a simple approach to deal with the issue of  self-citations 
(whereby a firm cites its own patents) and includes the fraction of  self-citations of 
the patents of the firm as an additional control variable in our baseline specification. 
This has little effect on the relationship between CEO age and the creativity of inno-
vations, though this  self-citation measure itself is significantly positive, suggesting 
that firms that give more citations to their own patents tend to be more creative 
according to all four of our measures.

23 To deal with outliers in R&D expenditures, we winsorize this variable at its  ninety-ninth percentile value.
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In addition, Table B2 in online Appendix B shows that the results are very similar 
in a much smaller balanced sample of 297 firms with no missing values for any of 
our main variables between 1995 and 2000 and also when we use the average age of 
the top management team rather than CEO age. (We prefer CEO age as our baseline 
measure because across companies there is considerable variation in the number 
of managers for which age data are available, making this measure potentially less 
comparable across firms). It demonstrates as well that the results are very similar in 
 high-tech and  low-tech subsamples (where  high-tech firms are those in SIC 35 and 
36, which include industrial and commercial machinery and equipment and com-
puter equipment and electronic and other electrical equipment and components, and 
 low-tech firms are the rest) and in a  nonpharmaceutical subsample. These subsam-
ples are further studied in Table 5. Table B3 in the online Appendix demonstrates 
that our results are very similar when we control for patents during the last three 
years rather than the entire stock of patents. Online Appendix Table B4 confirms that 
the results are also similar when we explicitly recognize the selection into having 
any patents using a  two-step Heckman correction, while online Appendix Table B5 
verifies that these relationships are not driven by firms that have recently undertaken 
an initial public offering (IPO) by removing firms that have had an IPO over the last 
ten years from the sample.

Table B6 in the online Appendix shows the weighted and the unweighted rela-
tionship between CEO age and several alternative measures of radical innovations. 
These are: a measure of innovation quality using average citations per patent com-
puted using only five years of citations data; a measure of superstar inventors using 
information on the most highly cited patent of the inventor; the tail innovation index 
with  p = 0.90 ; the alternative tail innovation index we introduced above, which 
includes the fraction of patents with cites above the median in the denominator; and 
the originality index. We also look at employment growth, sales growth, and the 
R&D intensity of the firm in that year to both investigate whether the more radical 
innovations translate into faster growth and to check whether CEO age impacts firm 
outcomes beyond patents. The results using the alternative measures of the creativ-
ity of innovations are similar to those in Table 2, except that there are a few cases 
where the relationship is no longer significant in the unweighted specifications. We 
further find negative effects of CEO age on employment and sales growth in the 
unweighted regressions but not in weighted regression, perhaps reflecting the fact 
that the effects of younger CEOs can be more easily detected on smaller firms. 
Consistent with our earlier emphasis, we do not find any relationship between CEO 
age and R&D intensity. In panels E and F, we show that CEO age also predicts first 
and second renewals of patents, which are alternative measures of the value and 
thus creativity of a patent. Also supportive is the fact that CEO age does not predict 
“internal innovations” (coded from patents that have more than half of their citations 
to the firm’s other patents). Lastly, Table B7 in the online Appendix shows a similar 
relationship between average CEO age in industry and  industry-level measures of 
radical innovations.

Overall, these results suggest that there is a robust and strong statistical rela-
tionship between the age of the CEO and each one of our four measures of radical 
innovations.
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B. Panel Results with Firm Fixed Effects

We now show that a strong and fairly robust association between CEO age and 
radical innovations is present when we focus on  within-firm variation in the age of 
the CEO. We further document that consistent with our theory, radical innovations 
start increasing before there is a decline in CEO age.

Table 5—Panel Regressions—Robustness

Innovation Superstar Tail Innovation Superstar Tail
quality fraction innovation quality fraction innovation

Panel A. Unweighted
CEO age −0.182 −0.140 −0.043 −0.181 −0.127 −0.038

(0.050) (0.041) (0.023) (0.108) (0.044) (0.036)
Lead CEO age −0.022 −0.015 0.010

(0.125) (0.058) (0.043)
Observations 7,170 7,170 7,170 5,472 5,472 5,472

Panel B. Missing observations as zeros
CEO age −0.096 −0.085 −0.032 −0.097 −0.067 −0.029

(0.035) (0.032) (0.013) (0.063) (0.035) (0.020)
Lead CEO age −0.027 −0.030 −0.007

(0.072) (0.038) (0.024)
Observations 11,525 11,525 11,525 10,009 10,009 10,009

Panel C.  High-tech subsample
CEO age −0.129 −0.089 −0.037 −0.053 −0.031 −0.004

(0.054) (0.082) (0.015) (0.054) (0.084) (0.017)
Lead CEO age −0.120 −0.103 −0.056

(0.060) (0.056) (0.022)
Observations 2,100 2,100 2,100 1,715 1,715 1,715

Panel D.  Low-tech subsample
CEO age −0.222 −0.193 −0.056 −0.167 −0.140 −0.047

(0.068) (0.064) (0.017) (0.067) (0.058) (0.014)
Lead CEO age −0.111 −0.108 −0.020

(0.068) (0.056) (0.018)
Observations 5,070 5,070 5,070 3,757 3,757 3,757

Panel E. Controlling for self-citation fraction
CEO age −0.187 −0.151 −0.048 −0.116 −0.090 −0.028

(0.044) (0.052) (0.012) (0.041) (0.049) (0.011)
Lead CEO age −0.122 −0.110 −0.034

(0.048) (0.044) (0.014)
Observations 6,286 6,286 6,286 5,157 5,157 5,157

Notes: Weighted  firm-level panel regressions with annual observations with number of patents (in that year) as 
weights. The dependent variables are innovation quality, superstar fraction, and tail innovation. Robust standard 
errors clustered at the firm level are in parentheses. All specifications control for log employment, log sales, log 
patents, year dummies, and a full set of firm fixed effects (and thus firm age and the  four-digit SIC dummies are 
no longer included). Panel A repeats the regressions in panels B and E of Table 4 without using weights. Panel B 
replaces the missing values for dependent variables by zeros, drops log patent count from the controls, and runs 
unweighted regressions in order to extend the sample to firms that do not apply for any patents in a given year. 
Panels C and D are for the  high-tech and  low-tech subsamples.  High-tech subsample includes all firms with a pri-
mary industry classification of SIC 35 (industrial and commercial machinery and equipment and computer equip-
ment) and 36 (electronic and other electrical equipment and components), while the  low-tech subsample includes 
the rest. Panel E repeats the same regressions, adding  self-citation fraction as a control. See text and notes to Table 1 
for variable definitions.
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Panel A in Table 4 allows CEO age to vary across years but still without fixed 
effects. Thus relative to Table 2, the only difference here is that we are exploiting 
both the  between-firm and  over-time variation. As a result, there is now a stronger 
negative relationship between CEO age and our measures of creativity of innova-
tions than in Table 2.

Panel B turns to our main specification, which includes firm fixed effects as well 
as year effects (and, of course, in this case, SIC industry dummies and firm age are 
dropped). This means that we are now focusing on  within-firm variation, and the 
CEO age variable is being identified from changes in CEOs—that is, from whether a 
firm that switches to a younger CEO tends to have more radical innovations relative 
to its mean.24 In addition to throwing away all of the  between-firm variation, another 
challenge to finding meaningful results in this specification is that patent applica-
tions in one year are often the result of research and product selection from several 
previous years.25 These concerns notwithstanding, all of the coefficient estimates 
on CEO age in these  within-firm regressions, except for generality, are negative 
and statistically significant. For innovation quality, the magnitude of the estimate 
is about 11  percent larger than the specification without fixed effects in Table  2 
(e.g.,  − 0.190  versus  − 0.171 ), whereas for superstar fraction and tail innovations, it 
is smaller—about 48 percent to 62 percent of the magnitude in Table 2.

The current CEO influences the contemporaneous innovation strategy, and in our 
model, this has an immediate impact on radical innovations. In practice, some of the 
impact is likely to be delayed since research projects, and even patenting, can take 
several years. We may therefore expect the impact of the CEO’s human capital, deci-
sions, and age to influence the creativity of innovations over time. We investigate 
this issue in panel C by including current CEO age and lagged CEO age simultane-
ously. Our results show that, with all of our measures of radical innovations (except 
generality), both matter with quantitatively similar magnitudes.

A related question concerns separating the impact of the current CEO from the 
persistent effects of past innovations—for example, past creativity may spill over 
into current creativity in part because patents from a research project may arrive 
in the course of several years. We investigate this issue by including the lagged 
dependent variable on the  right-hand side. Though such a model, with fixed effects 
and lagged dependent variable, is not consistently estimated by the standard within 
estimator when the coefficient on the lagged dependent variable is close to 1, the 
results in panel D show that its coefficient is very far from 1 and the estimates are 
fairly similar to those in panel A.26

Finally, in panel E, we turn to a central longitudinal implication of our model—
that creativity of innovations should increase, on average, before the firm switches 
to a younger manager. The most direct way of investigating this prediction is by 

24 This specification is related to Bertrand and Schoar’s famous (2003) paper on the effect of managers on cor-
porate policies, though in contrast to our focus on CEOs, their sample includes chief financial and operating officers 
as well as  lower-level executives.

25 Recall, however, that patents are classified according to their year of application, so we are investigating the 
impact of CEO age not on patents granted but on patents applied for when the CEO is in charge.

26 If we estimate these models using Arellano and Bond’s (1991) GMM estimators, the results are similar with 
innovation quality and superstar fraction but weaker with the tail innovation index, partly because we lose about a 
quarter of our sample with these GMM models.
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including the lead of CEO age together with current CEO age (similar to the speci-
fication in panel C, except that lead CEO age replaces lagged CEO age). The spec-
ifications reported in panel E show statistically significant negative effects of both 
current and lead CEO age on the creativity of innovations (except with the gener-
ality measure). Interestingly, and perhaps somewhat surprisingly, the magnitudes 
of the lead and the contemporaneous effects are quite similar. The significant effect 
of lead CEO age is prima facie evidence of the importance of sorting of younger 
CEOs to firms that have a comparative advantage in radical innovation (for example, 
because they are more open to disruption), an issue we investigate in greater detail 
in the next subsection.

Table  5 investigates the robustness of  within-firm relationships reported in 
Table 4, focusing on the specifications reported in panels B and E and on our first 
three measures, innovation quality, superstar fraction, and tail innovation (since 
there is no robust relationship with generality once firm fixed effects are included). 
Panel A  documents a very similar relationship when the regression is unweighted. 
Panel B shows that the results with firm fixed effects are also robust to imputing a 
value of zero to our measures of radical innovations when the firm does not have any 
patents in that year (as in panel H of Table 3). Panels C and D show that the same 
relationships are present in both our  high-tech and  low-tech subsamples, with if any-
thing a stronger relationship in the  low-tech subsample. Finally, panel E shows that 
the results are robust to including the  self-citation fraction on the  right-hand side, as 
in panel I of Table 3.27

Overall, the results in this subsection demonstrate that firms that switch to 
younger CEOs generate more radical innovations both after and shortly before such 
a switch. Though this pattern is indicative of the simultaneous presence of sorting 
and causal effects of CEO age on radical innovations, as explained previously it 
does not directly translate into causal estimates. We next turn to an indirect infer-
ence procedure exploiting the structure of our model to obtain such causal estimates.

C. The Causal Effect of Manager Age on Radical Innovations

In this subsection, we perform an indirect inference exercise in order to shed 
further light on the causal effect of manager age on radical innovations. We choose 
the parameters of the model presented in Section I so that the model quantitatively 
matches the  reduced-form estimates—in particular, the coefficients of lead and 
current CEO age for innovation quality. We then use these implied parameters 
to compute the implied causal effect of manager age on radical innovations. We 

27 Online Appendix Table B8 shows that our results with firm fixed effects are similar when we include the 
additional controls from panel F of Table 3, when we include R&D intensity, and in the  nonpharmaceutical sample. 
We also report a median regression with similar results, though in this case, since the median regression is nonlinear 
and would not consistently remove the fixed effects, we first  de-mean the data. We do not report a specification with 
average manager age since the  year-to-year variation in this variable is largely driven by the number of managers for 
whom ages are reported. Finally, online Appendix Table B9 shows the  within-firm equivalent of online Appendix 
Table B6, where the relationship between CEO age and the alternative measures of radical innovations continues to 
be robust. However, the relationship with employment and sales growth is weaker and not statistically significant, 
which is unsurprising since the impact of a CEO on sales and employment growth is likely realized over time and 
reflects not just his or her influence on creative innovations but a whole range of other factors.
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perform this exercise both by matching moments from the data and our estimates 
from the weighted regressions (namely, from panels B and E in Table 4) and from 
the unweighted regressions (from panel A in Table 5).

The (average) impact of a younger manager on the creativity of innovations for a 

given firm type is    1 ____ 
F( a   ∗ )    ∫ 0  

 a   ∗   Λ  θ H     q –    a  dF(a) =   
Λ  θ H   δ _ 
g + δ     

[1 −  e   −(g+δ ) a   ∗  ]  __________ 
[1 −  e   −δ a   ∗   ]

   . Because of the sorting 

of younger managers to  high-type firms, we cannot directly obtain this quantity 
from our  reduced-form empirical exercise. Rather, we need to obtain estimates of 
the parameters  ψ  and  Λ  θ H    (the parameters  Λ  and   θ H    do not matter separately, and 
thus in what follows, we will treat  Λ  θ H    as a single parameter). The  reduced-form 
coefficient estimates are functions of these parameters, but they also depend on the 
transitions between  high-type and  low-type firms, the distribution of incremental 
innovations per product relative to the threshold for radical innovation,   n   ∗  , and the 
stationary distributions theoretically characterized in Appendix A.

Though structurally estimating all of the underlying parameters of our model 
would require more information on firm transitions and stationary distributions, we 
can obtain estimates of the structural parameters that are relevant for the causal 
effect of CEO age on radical innovations more straightforwardly. For this exercise, 
we set the discount rate to  ρ = 0.02  and normalize the profit flow to  π = 1  (which 
is without loss of any generality). We fit an exponential distribution to the age dis-
tribution of managers in our sample to obtain an estimate of  δ  in the model. We 
take the entry rate to be  x = 5 percent , which corresponds to the entry rate in our 
Compustat sample. Finally, we take the parameter  α , which determines how rapidly 
the productivity of incremental innovations declines from Akcigit and Kerr (2018), 
who estimate a similar parameter from the patent citation distribution.

This leaves the following parameter vector  Ψ ≡ {ψ, φ, Λ  θ H  , ξ, η, ζ }  to be deter-
mined. Once these parameter values have also been fixed, optimal innovation deci-
sions and equilibrium stationary distributions can be computed using the expressions 
provided in Section I and Appendix A). We can then generate simulated firm histories 
from which the equivalents of the  reduced-form regression coefficients in Table 4 
can be computed. Of particular importance for this exercise are the specifications 
in panels B and E of Table 4, where various measures of radical innovations were 
regressed on current CEO age (and lead CEO age in panel E), firm fixed effects, 
and controls. Throughout, we focus on the innovation quality measure (column 1).

Let us denote the coefficient estimate on current CEO age in column 1, panel B 
of Table 4 by   γ current    and the coefficient estimates on current and lead CEO age in 
column 1, panel E, respectively, by   γ  current  ′    and   γ  lead  ′   . In our indirect inference pro-
cedure, we will target these three parameters. Specifically, we generate data from 
the model given a parameter vector  Ψ  and convert the measure of successful radical 
innovation in the model, which is a  0–1 variable, into the same units as our innova-
tion quality variable (by dividing it by its variance and multiplying it with the vari-
ance of innovation quality). We then run the same regressions as in panels B and E 
of Table 4 and compare the estimates to the empirical estimates of   γ current   ,   γ  current  ′   , 
and   γ  lead  ′   .

In addition to these three regression coefficients, our indirect inference procedure 
targets three central moments in the data: the average annual growth rate of (real) 
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sales per worker;  within-firm coefficient of variation of radical innovations; and the 
fraction of incremental innovations, measured as fraction of internal patents (which 
mainly build on innovating firms’ existing lines as opposed to innovating on product 
lines operated by other firms).28 This implies that we have in total six data moments 
and six parameters.

We make two additional assumptions in matching the model to data. First, in the 
model, managers are employed at the product line level, whereas in the data we only 
observe CEO at the level of the company (which comprises several product lines). 
We ignore this distinction and treat the data as if it were generated from one-product 
firms. Second, in the model, the identity of the manager is indeterminate, as there 
are no costs of changing managers, so a firm could change its manager every instant 
or at some regular interval even without changing its innovation strategy. To make 
the model more comparable to data, we assume that a firm keeps its manager until it 
needs to switch from an older to a younger manager in order to change its innovation 
strategy.

Table 6 provides the values of the parameters we have selected on the basis of 
external data as well as the values of the parameters in the vector  Ψ , which are cho-
sen to match the six aforementioned moments. The first column of Table 6 displays 
the parameter values obtained in the first estimation, where we target the coefficient 
estimates from the weighted regressions, whereas the second column displays those 
obtained in the second estimation, where we target the coefficient estimates from 
the unweighted regressions instead. Table 7 shows the match between the values 
of these moments in the data and those implied by the model for the two speci-
fications. Panel A in Table 7 reports estimates using weighted regression targets, 
while panel  B is for the case with unweighted regression targets. In both cases, 
the  model-implied numbers are very close to the targeted empirical moments, and 

28 Following Akcigit and Kerr (2018), we define internal patents as those whose majority of citations are self 
cites.

Table 6—Structural Parameters

Estimation 1 Estimation 2 Description Identification

External calibration
 x = 0.05  x = 0.05 Entry rate Compustat sample
 ρ = 0.02  ρ = 0.02 Discount rate Standard value
 δ = 0.04  δ = 0.04 Manager death rate Compustat sample
 α = 0.93  α = 0.93 Reduction rate of innovation size Akcigit and Kerr (2015)

Indirect inference
 ψ = 0.079  ψ = 0.139 Baseline radical innovation rate for high type Estimate

 Λ  θ H   = 0.005  Λ  θ H   = 0.068  High-type innovation parameter Estimate
 φ = 0.040  φ = 0.400 Transition rate from low type to high type Estimate
 ξ = 0.037  ξ = 0.176 Incremental innovation rate Estimate
 η = 0.433  η = 0.221 Initial innovation size Estimate
 ζ = 0.272  ζ = 0.910 Probability of  high-type entrant Estimate

Notes: This table documents the parameter choices and estimates. The first column displays the parameter val-
ues obtained in the first estimation, where we target the weighted regression coefficients presented in panel A of 
Table 8. The second column displays the parameter values obtained in the second estimation, where we target the 
unweighted regression coefficients presented in panel B of Table 8. See Section IIID for details.
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in particular, the model’s predictions are consistent with  reduced-form regression 
results, including the significant and sizable coefficient on lead CEO age, which is 
generated by the fact that  ψ > 0  and is a  nontrivial source of radical innovations.

The implied pattern is also visible in Figures 2 and 3, which plot the probability 
of a radical innovation and the average CEO age as a function of time since switch-
ing to  high type for the estimates in panel A of Table 7. These figures show that firms 
slowly reduce the average age of their managers after switching to  high type (since 
if at first they are below   n   ∗  , they do not need to change their CEO). Correspondingly, 
they also slowly increase their probability of radical innovations. Because much of 
this increase in the probability of radical innovations takes place before  high-type 
firms switch to a younger manager, in the  reduced-form regressions, it will be cap-
tured by lead CEO age.

It is also useful to gauge whether, at these estimated parameter values, the model 
performs well on some other dimensions. One empirical moment we have not used 
for estimation is the probability of firms switching to younger managers. Using the 
first set of estimated parameter values, 20 percent of all firms attempt a radical inno-
vation (these are the  high-type firms with  n ≥  n   ∗  ). Consequently, “young” manag-
ers (defined as those with  a <  a   ∗   in Proposition 1) also make up 20 percent of the 
population of managers, implying that   a   ∗   corresponds to age 50 in our sample of 
managers/CEOs. Using this information, we can then compare the annual proba-
bility of a firm switching from an old manager (with  a >  a   ∗  ) to a young manager 
(with  a ≤  a   ∗  ) in the data and in the model. Reassuringly, these two numbers are 
fairly close to each other, 3.98 percent and 2.75 percent.

Using the parameter estimates from these exercises, we next compute the “causal 
effect” of manager age on radical innovations. We start with the equilibrium sta-
tionary distribution and then replace them with old managers (in practice, we sim-
ply reverse the allocation of managers to firms by age). We assume that after this 

Table 7—Empirical and  Model-Generated Moments

Target US Data Model

Panel A. Estimation 1—weighted regression targets
Current manager age coefficient of Table 4 panel B column 1 − 0.190 − 0.190
Lead manager age coefficient of Table 4 panel E column 1 − 0.128 − 0.125
Current manager age coefficient of Table 4 panel E column 1 − 0.115 − 0.108
Annual growth rate 5.75% 5.96%
 Within-firm coefficient of variation of radical innovations 1.99 2.22
Fraction of internal patents 21.5% 21.1%

Panel B. Estimation 2—unweighted regression targets
Current manager age coefficient of Table 5 panel A column 1 − 0.182 − 0.187
Lead manager age coefficient of Table 5 panel A column 4 − 0.022 − 0.022
Current manager age coefficient of Table 5 panel A column 4 − 0.181 − 0.176
Annual growth rate 5.75% 5.85%
 Within-firm coefficient of variation of radical innovations 1.99 1.08
Fraction of internal patents 21.5% 20.7%

Notes: This table displays the empirical and  model-generated moments for the indirect infer-
ence procedure under the two estimation procedures. In the first estimation, we target the coef-
ficient estimates from the weighted regressions in panels B and E of Table 5. In the second 
estimation, we target the coefficient estimates from the unweighted regressions in panel A of 
Table 6. The first three targets are different between the estimations, whereas the last three tar-
gets remain the same. See Section IIID for details.
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reshuffling, each firm will pursue the same innovation strategy as before.29 We then 
calculate the change in radical innovations in this hypothetical economy compared 
to the baseline economy. This exercise yields a 1  percent decline in the average 
number of radical innovations with the weighted estimates and 7 percent with the 
unweighted estimates. Taken together, these results imply that although the causal 
effect of manager age on radical innovations is positive, it cannot account for the 
bulk of the variation in radical innovations (which are, instead, mostly driven by 
firm type according to our estimates).30

Overall, our indirect inference exercise establishes that the model can generate 
the patterns we see in the data but implies that much of the  reduced-form relation-
ship between manager age and radical innovations is due to sorting. Nonetheless, 
there is a  nonnegligible causal effect of younger managers on radical innovations 
as well.

29 It is possible that some firms would switch their innovation strategy because they end up with much older or 
much younger managers. However, whether this is the case or not would also depend on managerial wages after 
reshuffling, which in turn depends on a variety of auxiliary assumptions on wage determination under “mismatch.” 
Our strategy avoids this complication by estimating a lower bound on this effect, though this lower bound is likely 
to be fairly tight since  low-type firms cannot change their innovation strategy and most  high-type firms would 
be unlikely to alter their innovation strategy either unless there is a very large change in the age of the manager 
assigned to them.

30 We also note that, even though the causal effect of young managers is small, this is still sufficient in our model 
to support an allocation in which, as in the data, younger managers are allocated to  high-type firms pursuing radical 
innovations.

Figure 2. Evolution of Creative Innovations for High-Type Firms

Notes: The horizontal axis corresponds to the number of years since the firm has switched to high type (which is 
the year of entry for new  high-type firms), and the vertical axis plots the average probability of generating a new 
radical innovation for all such firms.
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D. Inventor Age and Creativity of Innovations

We next turn to an investigation of the role of inventors in radical innovations, 
focusing again on age. For this purpose, we use  patent-level regressions and esti-
mate whether there is an empirical association between inventor age and our various 
measures of creativity of innovations. Though in our theoretical model there is no 
distinction between managers and inventors, this distinction is important in prac-
tice. One might then expect the role of  product-line managers in our model to be 
played partly by the top management of the firm and partly by inventors (or the lead 
inventor) working on a particular R&D project. CEOs, then, not only decide which 
projects the company should focus on but also choose the research team. In this 
subsection, we bring in information on the age of inventors in order to investigate 
the simultaneous effects of inventor and CEO age on the creativity of innovations.

We use Lai et al.’s (2014) unique inventor identifiers described above to create a 
proxy for this variable. Our proxy is the number of years since the first innovation 
of the inventor, which we will refer to as “inventor age.”

Our main regression in this subsection will be at the patent level and take the form

(14)   y ift   = ϕ  I ift   + α  m ft   +  X  ift  ′   β +  δ f   +  γ i   +  d t   +  ε ift    .

Figure 3. Evolution of CEO Age for  High-Type Firms

Notes: The horizontal axis corresponds to the number of years since the firm has switched to high type (which is 
the year of entry for new  high-type firms), and the vertical axis plots the average age of the CEO for all such firms. 
Note that 26 has been added to the age of the CEO since the youngest manager in the model has an age of 0, whereas 
this number is 26 in the data.
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Here   y ift    is one of our measures of the creativity of innovation for (patent)  i  granted 
to firm  f  at time  t . Our key  right-hand-side variable is   I ift   , the age of the inventors 
named in patent  i  (in practice, there is often more than one such inventor listed for 
a patent). In addition,   m ft    is defined as CEO age at time  t  and will be included in 
some regressions,   X ift    is a vector of possible controls, and   δ f    denotes a full set of 
firm fixed effects, so that our specifications here exploit differences in the creativity 
of innovations of a single firm as a function of the characteristics of the innovators 
involved in the relevant patent. In our core specifications, we also control for a set 
of dummies, denoted by   γ i   , related to inventor characteristics as we describe below. 
All specifications further control for a full set of year effects, denoted by   d t   , and   ε ift    
is the error term.31

The results from the estimation of (14) are reported in Table 8. In panel A, we 
focus on a specification similar to the regressions with firm fixed effects reported 
in Table 4. This is useful for showing that this different frame still replicates the 
results showing the impact of CEO age on creativity of innovations. In particular, 
panel  A focuses on Compustat firms for the period 1992–2004 and includes the 
same set of controls as in panel A of Table 4 (firm fixed effects, year fixed effects, 
log employment, log sales, and log patents of the firm); it does not contain any vari-
ables related to inventor characteristics. As in the rest of this table, these regressions 
are not weighted (since they are at the patent level), and the standard errors are 
robust and clustered at the firm level.

Our results using this specification are similar to those of panel A of Table 4, 
though a little smaller. In column 1, for instance, we see an estimate of  − 0.121  
(standard error = 0.038) compared to  − 0.190  in Table 4. As a natural  patent-level 
analog of our tail innovation index, we look at a dummy for the patent in question 
being above the  p th percentile of the citation distribution and report results using 
this measure for two values,  p = 0.99  and  p = 0.90 , in columns 2 and 3. Both of 
these measures are strongly negatively correlated with CEO age.32

Panel B of Table 8 goes in the other direction and reports the estimates of a model 
that controls for inventor characteristics and looks at the impact of inventor age, 
without controlling for CEO age, for the same sample as in panel A (thus restricting 
it to firms with information on CEO age). As with all of the other models reported in 
this table, in panel B we control for a full set of dummies for the (count of) maximum 
number of patents over our sample period of any of the inventors on this patent,33 
a full set of dummies for the size of the inventor team (i.e., how many inventors are 
listed), and a full set of dummies for the  three-digit IPC class.34 The inclusion of this 

31 A single patent can appear multiple times in our sample if it belongs to multiple firms, but this is very rare and 
applies to less than 0.2 percent of the patents in our sample.

32 Our measure of superstar fraction is no longer meaningful at the patent level. For completeness, we also show 
results with the generality index, even though the results in Table 4 already indicated that, with firm fixed effects 
included, there is no longer a significant relationship between CEO age and the generality index, and this lack of 
relationship persists for all of the estimates we report in Table 8.

33 In other words, we include a dummy variable for the assignee/inventor of this patent, with the highest number 
of total patents having  k = 1, 2, …, 89+  patents (where 89+ corresponds to 89 or more patents for the inventor 
with the maximum number of patents).

34 This corresponds to 270 separate technology classes and is roughly at the same level of disaggregation as the 
SIC dummies we used in the  firm-level analysis in Tables 2–3.
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rich set of dummy variables enables us to compare inventors of similar productivity. 
It thus approximates a model that includes a full set of inventor dummies.35 The 
results show that there is a strong relationship between inventor age and the creativ-
ity of innovations. For example, in column 1, the coefficient estimate on inventor 
age is  − 0.234  (standard error = 0.026), about twice as large as the CEO age esti-
mate in panel A.

When we do not control for CEO age, the sample can be extended beyond 
 1992–2004. This is done in panel C, which expands the sample in two different 

35 We cannot include a full set of inventor fixed effects directly because inventor age would not be identified in 
the presence of the full set of year dummies.

Table 8— Patent-Level Panel Regressions

 
Innovation quality

Tail innovation
(above 99)

Tail innovation
(above 90)

 
Generality

Panel A. CEO age, unbalanced firm sample,  1992–2004
CEO age −0.121 −0.317 −1.241 0.029

(0.038) (0.131) (0.412) (0.025)
Observations 318,007 318,007 318,007 264,972

Panel B. Inventor age, unbalanced firm sample,  1992–2004
Inventor age −0.234 −0.446 −2.873 −0.019

(0.026) (0.122) (0.318) (0.022)
Observations 318,007 318,007 318,007 264,972

Panel C. Inventor age, extended sample,  1985–2004
Inventor age −0.226 −0.380 −2.828 −0.017

(0.022) (0.076) (0.292) (0.017)
Observations 574,903 574,903 574,903 468,450

Panel D. Inventor age, extended sample,  1985–2004
Inventor age −0.199 −0.321 −2.336 −0.046

(0.010) (0.035) (0.131) (0.011)
Observations 1,879,300 1,879,300 1,879,300 1,560,165

Panel E. CEO age and inventor age, unbalanced firm sample,  1992–2004
Inventor age −0.234 −0.444 −2.866 −0.019

(0.026) (0.121) (0.318) (0.021)
CEO age −0.121 −0.319 −1.216 0.028

(0.036) (0.126) (0.387) (0.022)
Observations 318,007 318,007 318,007 264,972

Notes:  Patent-level panel regressions with annual observations. The dependent variables are innovation quality at 
the patent level, a dummy for the patent being above the  ninety-ninth percentile of the citation distribution, dummy 
for the patent being above the ninetieth percentile of the citation distribution, and generality index at the patent 
level. Robust standard errors clustered at the firm level are in parentheses. Panel A is for our unbalanced firm sam-
ple  1992–2004 and controls for log employment, log sales, log patents, a full set of firm fixed effects, and appli-
cation year dummies, and the key  right-hand-side variable is CEO age. Panel B is for our unbalanced firm sample 
 1992–2004 and controls for log employment, log sales, log patents, application year dummies, a full set of firm 
fixed effects, a full set of dummies for inventor team size, a full set of dummies for  three-digit IPC technology class 
dummies, and a full set of dummies for the total number of patents of the inventor within the team with the high-
est number of patents, and the key  right-hand-side variable is average inventor age. Panel C expands the sample of 
panel B to  1985–2004 and also adds Compustat firms without CEO information into the sample. Panel D extends 
the sample of panel C to include  non-Compustat firms as well (hence excludes log sales and log employment and 
still includes a full set of firm fixed effects). Panel E is for our unbalanced firm sample  1992–2004 and adds CEO 
age to the specification of panel B. See text and notes to Table 1 for variable definitions.
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ways, first by including Compustat firms without CEO information and second by 
broadening the time period covered to  1985–2004. The results are very similar to 
those in panel B, indicating that the focus on Compustat firms with CEO age infor-
mation is not responsible for the broad patterns we are documenting.

Panel  D extends the sample further to  non-Compustat firms, which can also 
be included in our analysis since we are not using information on CEO age. This 
increases our sample sixfold (since most patents are held by  non-Compustat firms). 
However, in this case, we can no longer include the employment and sales controls. 
Despite the addition of almost 1.5 million additional patents and the lack of our 
employment and sales controls, the results in this panel are again very similar to 
those in previous panels and suggest that, at least in this instance, our results are not 
driven by our focus on the Compustat sample.

Panel E provides our main results in this subsection. It returns to the Compustat 
sample over the period  1992–2004 and adds back the CEO age variable; otherwise, 
the specification is identical to that in panel  B. The results show precisely esti-
mated impacts of both CEO age and inventor age. For example, in column 1 with 
our innovation quality variable, the coefficient on CEO age is  − 0.121  (standard 
error = 0.036) and that on inventor age is  − 0.234  (standard error = 0.026); these 
are very close to the estimates in panels A and B, respectively. The pattern is similar 
in the other columns (except again for generality).

These results provide further evidence that the relationship between manager/
CEO age and the creativity of innovations in the data reflects an important dimen-
sion of sorting. In particular, firms appear to make several associated changes—in 
top management and innovation teams—around the same time they change their 
portfolio of innovation and their innovation strategy (and perhaps their “corporate 
culture”). Reflecting this sorting, the estimated magnitudes linking CEO age to 
our indices of radical innovations are smaller in Table 8 than those in our baseline 
 firm-level regressions.

Our next results, reported in Table 9, provide some direct evidence on this by 
looking at the relationship between inventor age and CEO age. We estimate a 
regression similar to equation (14) except that now the dependent variable is the 
average age of the inventors on the patents granted for that firm in year  t  and the 
key  right-hand-side variable is the age of the CEO, and we again control for firm 
fixed effects. The first column of Table 9 reports a regression of the average age of 
inventors on firm and year fixed effects, log employment, log sales, log patents, and 
CEO age, while the second column also adds dummies for inventor team size and 
 three-digit IPC class, as in the specifications in Table 8. The results, which show 
a positive (even if only marginally significant) relationship, suggest that younger 
CEOs tend to hire younger inventors, indirectly corroborating the sorting effect 
emphasized in our theoretical model.36 Further evidence consistent with this pat-
tern is provided in Tables  B10 and  B11 in online Appendix  B, where we create 
 time-varying measures of the innovation quality of new and existing inventors of 
the firm (based on the citations of their patents in the past). We then show that both 

36 Interestingly, this result disappears when we do not control for firm fixed effects.
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using our innovation quality measure and the tail innovation index, a younger CEO 
is associated both with an increase in the creativity of the innovation of continuing 
inventors and an even larger increase in the quality of new inventors.

E. Stock of Knowledge, Opportunity Cost, and Creativity of Innovations

Finally, Table 10 turns to an investigation of the additional implications of our 
approach highlighted in Proposition 2. We noted there that we may expect openness 
to disruption to be more important for companies that are technologically more 
advanced (as measured by the number of patents) but also that companies that have 
more to lose (because of the greater opportunity cost of disruption in terms of other 
profitable activities) may shy away from disruptive radical innovations. We inves-
tigate this issue by including the interaction between CEO age and log total patent 
count (as a proxy for how advanced the technology of the company is) and also the 
interaction between CEO age and log sales (as a proxy for company revenues that 
may be risked by disruptive innovations) in equation (13). According to the theo-
retical ideas suggested above, we expect the interaction with log total patent count 
to be negative and that with sales to be positive (indicating that average manager 
age matters more for the creativity of innovations for companies with a significant 
number of patents and less for companies with high sales).

This is a demanding, as well as crude, test since neither proxy is perfect, and 
moreover, log sales and log patent counts are positively correlated (the weighted 
correlation between the two variables is  0.69  in our sample), thus stacking the cards 
against finding an informative set of results.

Nevertheless, Table 10, which uses the same firm sample with annual obser-
vations as in panel  A of Table  4, provides some evidence that our theoretical 
expectations are borne out. In all of our specifications, the interaction between 
CEO age and log total patent count is negative and the interaction with log sales is 
positive. Moreover, these interactions are statistically significant except for the log 
patent interaction for the innovation quality measure.37 These results thus provide 
some support for the hypothesis that the stock of knowledge of the company and 

37 As noted above, the main effects are evaluated at the sample mean and are typically close to the estimates 
reported in Table 2.

Table 9—Inventor Age and CEO Age, Unbalanced Firm Sample,  1992–2004

Inventor age Inventor age
(1) (2)

CEO age 0.013 0.013
(0.006) (0.006)

Observations 318,007 318,007

Notes:  Patent-level panel regressions with annual observations for the unbalanced firm sample 
 1992–2004. The dependent variable is the average age of inventors. The first column controls 
for log employment, log sales, log patents, application year dummies, and a full set of firm 
fixed effects, and the second column adds to this a full set of team size dummies and a full set 
of dummies for  three-digit IPC technology class dummies. See text and notes to Table 1 for 
variable definitions.
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opportunity cost effects are present and might in fact be quite important (at least 
quantitatively at this correlational level).

IV. Conclusion

Despite a large and flourishing literature on innovation, there is relatively little 
work on the determinants of the creativity of innovative activity and in particu-
lar, on innovations and patents that contribute most to knowledge. In this paper, 
we undertook a first investigation of the role of firms, managers, and innovators in 
radical (more creative) innovations. We provided a simple model drawing a clear 
distinction between radical innovations and incremental innovations, whereby the 
former combines ideas from several different lines of research and creates more 
significant advances (and contributions to knowledge). We showed that, because 
of their comparative advantage in radical innovation, younger managers tend to be 
employed in firms attempting radical innovations and also contribute to the creativ-
ity of innovations.

The bulk of our paper provides empirical evidence consistent with the radical 
innovation contributions of certain types of firms (for example, those that are more 
open to disruptions and interested in new technological paradigms), which are more 
willing to hire younger managers. We do this using several measures of radical inno-
vations, including our proxy for innovation quality, which is the average number of 
citations per patent; two indices for creativity of innovations, which are the fraction 
of superstar innovators and the likelihood of a very high number of citations (in 
particular, fraction of the patents of a firm that are above the  ninety-ninth percentile 
in terms of citations); and the generality index. Based on our theory, we use the age 
of the CEO of the company as a proxy for openness to disruption or other factors 
creating a comparative advantage in radical innovations.

Table 10—Stock of Knowledge, Opportunity Cost, 
and Creative Innovations, Unbalanced Firm Sample,  1992–2004

Innovation quality Superstar fraction Tail innovation Generality

CEO age −0.182 −0.216 −0.057 −0.044
(0.027) (0.027) (0.008) (0.016)

log sales 1.440 2.053 0.252 1.187
(0.448) (0.609) (0.142) (0.327)

log patent −0.389 −0.064 0.085 −0.004
(0.193) (0.257) (0.065) (0.150)

CEO age × log patent −0.004 −0.070 −0.016 −0.036
(0.014) (0.021) (0.006) (0.011)

CEO age × log sales 0.023 0.079 0.018 0.044
(0.017) (0.021) (0.006) (0.011)

Observations 7,170 7,170 7,170 6,286

Notes: Weighted  firm-level panel regressions with annual observations for the unbalanced firm panel,  1992–2004, 
with number of patents (in that year) as weights. The dependent variables are innovation quality, superstar fraction, 
tail innovation, and generality. Robust standard errors clustered at the firm level are in parentheses. All regressions 
also include log employment, application year dummies, and a full set of dummies for  four-digit SIC industries. See 
text and notes to Table 1 for variable definitions.
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We find fairly consistent and robust  cross-sectional and  within-firm correlations 
between openness to disruption, proxied by CEO age, and radical innovations. They 
do not, however, correspond to the causal effect of CEO age on radical innova-
tions because, as highlighted by our theoretical model, younger managers tend to be 
employed by firms that are “ high-type”—for example, more open to disruption and 
more creative. A simple indirect inference exercise using the structure of our model 
suggests that most of the empirical relationship between CEO age and radical inno-
vations is due to these sorting effects, and the causal impact of CEO age is positive 
but small.

Our paper highlights the need for future work investigating the effects of different 
types of firm organizations and other attributes of managers and innovators. A par-
ticularly fruitful direction would be to systematically investigate what types of firms 
and firm organizations encourage creativity and lead to more radical innovations. 
This would involve both theoretical and empirical analyses of the internal organi-
zation of firms and their research strategies and a study of the interplay between 
institutional and  society-level factors and the internal organization of firms.

Appendix A. Omitted Proofs from Section I

A1. The Derivation of Equations (7  ), (8), and (9)

A firm makes the innovation decision in each of its product lines to maximize its 
present discounted value, which we denote by   W s  (   →  q f   ,   

→  n f    ) , where  s ∈ {H, L} ,    →  q f     is 
the vector of productivities of the firm,    →  n f     is the vector of the number of incremental 
innovations in each of these product lines, and   m f    denotes the number of product 
lines that firm  f  is operating. The value function for a  low-type firm can be written as

(A1)  r  W L   (   q f   
→  ,    n f   

→  )  −   W ˙   L   (   q f   
→  ,    n f   

→  ) 

    =   ∑ 
m=1

  
 m f  

    [ max  
a
  

 
   {π  q f, j m     +   q –  t   f (a)  −  w a,t  } 

 + ξ [ W L   (   q f   
→   \ { q f, j m    }  ∪  { q f, j m     +  η  n f, j m    +1  } ,    n f   

→   \ { n f, j m    }  ∪  { n f, j m     + 1} ) 

 −  W L   (   q f   
→  ,    n f   

→  ) ] 

 + τ [ W L   (   q f   
→   \ { q f, j m    } ,    n f   

→   \ { n f, j m    } )  −  W L   (   q f   
→  ,    n f   

→  ) ] ] 

 + φ [ W H   (   q f   
→  ,    n f   

→  )  −  W L   (   q f   
→  ,    n f   

→  ) ]  .

The  right-hand side of this value function can be explained as follows: for each 
product line  m = 1, …,  m f    , the firm receives a revenue stream of  π  q f, j m      as a func-
tion of its productivity in this product line,   q f, j m     . In addition, it has a choice of the 
age of the manager it will hire to operate this product line (formally choosing  a 
∈  ℝ +   ∪ {∅} , which is suppressed to save on notation), and if the manager’s age is  
a  , it will have additional revenue/cost savings of    q –  t   f(a)  and pay the market price 
for such a manager of age  a  at time  t ,   w a,t    . Summing over all of its product lines 
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gives the current revenues of the firm. In addition, the firm can undertake an inno-
vation on the basis of the technology of each of its active product lines. Since we 
are looking at a  low-type firm, all innovations will be incremental, thus arriving 
at the rate  ξ . When such an innovation happens in product line  m  that has already 
undergone   n f, j m      incremental innovations, the  m th element of    →  q f     changes from   q f, j m      
to   q f, j m     +  η  n f, j m    +1    and  n  goes up by one. We represent this with the arguments of the 
value function changing to    →  q f    \{ q f, j m    } ∪ { q f, j m     +  η  n f, j m    +1  },    →  n f    \{ n f, j m    } ∪ { n f, j m     + 1}  (and 
the firm relinquishes its current value function   W L  (  →  q f   ,   

→  n f    ) ). The firm might also lose 
one of its currently active product lines to radical destruction, which happens at the 
endogenous rate  τ , and in that case, the firm’s value function changes from   W L  (  →  q f   ,   

→  n f    )  
to   W L  (  →  q f    \{ q f, j m    },   →  n f    \{ n f, j m    })  (i.e.,    →  q f     changes    →  q f    \{ q f, j m    }  and    →  n f     to    →  n f    \{ n f, j m    } ). Finally, the 
last term is due to the fact that a  low-type firm switches to  high type at the flow rate φ, 
in which case it relinquishes its current value function and begets the value function of 
a  high-type firm,   W H  (  →  q f   ,   

→  n f    ) .
The value function of a  high-type firm can be similarly written as

(A2)  r  W H   (   q f   
→  ,    n f   

→  )  −   W ˙   H   (   q f   
→  ,    n f   

→  ) 

  =   ∑ 
m=1

  
 m f  

    max {π  q f, j m     +  max  
a
  

 
   {  q –  t   f (a)  −  w a,t  

   + ξ [ W H   (   q f   
→   \ { q f, j m    }  ∪  { q f, j m     +  η  n f, j m    +1  } ,

     n f   
→   \ { n f, j m    }  ∪  { n f, j m     + 1} )  −  W H   (   q f   

→  ,    n f   
→  ) ] } ;

 π  q f, j m     +  max  
a
  

 
   {  q –  t   f (a) 

 + Λ  θ H     q –    a  [E  W H   (   q →   f   ∪  { q  j ′     +  η 0  } ,    n →   f   ∪  {0} ) 

 −  W H   (   q →   f  ,    n →   f  ) ]  −  w a,t  } }  

 +   ∑ 
m=1

  
 m f  

    τ [ W H   (   q f   
→   \ { q f, j m    } ,    n f   

→   \ { n f, j m    } )  −  W H   (   q f   
→  ,    n f   

→  ) ]  

 +   ∑ 
m=1

  
 m f  

    ψΛ  θ H   [E W H   (   q →   f   ∪  { q  j ′     +  η 0  } ,    n →   f   ∪  {0} )  −  W H   (   q →   f  ,    n →   f  ) ]  .

The intuition for this value function is very similar to (A1) except for the possibility 
of a radical innovation. In particular, for each product line  m , this  high-type firm 
has a radical innovation at the flow rate  ψΛ  θ H    regardless of its innovation strategy. 
In addition, it has a choice between incremental and radical innovation, represented 
by the outer maximization. The first option here is choosing incremental innovation 
for product line  m  and is thus similar to the first line of (A1). The second option is 
radical innovation, and in this case the  trade-off involved in the age of the manager 
is different since manager age affects the arrival rate of radical innovations as shown 
in (6). In the case of a successful radical innovation, the value of the firm changes 
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to  E  W H  (   →  q f    ∪ { q  j ′     +  η 0  },   →  n f    ∪ {0}) , where the expectation is over a product line drawn 
uniformly at random upon which the radical innovation will build.

Given (A1) and (A2), the value functions (7), (8), and (9) follow straightfor-
wardly by conjecturing their forms and verifying this conjecture. ∎

Proof of Propositions 1 and 2.—We present the Proofs of Propositions 1 and 2. 
The characterization of the rest of the general equilibrium is relegated to online 
Appendix B.

PROOF OF PROPOSITION 1:
First, substitute the equilibrium wage (10) into (8) to obtain a simplified value 

function for  low-type firms as

  r  V L   ( q j  , n)  −   V ̇   L   ( q j  , n)  = π  q j   + ξ [ V L   ( q j   +   q –  t   η  α   n+1 , n + 1)  −  V L   ( q j  , n) ] 

 − τ  V L   ( q j  , n)  + φ [ V H   ( q j  , n)  −  V L   ( q j  , n) ]  .

We next characterize the solution for this value function.

LEMMA 1: Suppose that the value function for a  high-type firm takes the following 
form:   V H  ( q j  , n) = A  q j   +  B ̃  (n)   q –  t  .  Then the value function of a product line operated 
by a  low-type firm, (8) takes the following form

(A3)   V L   ( q j  , n)  = A  q j   + B (n)    q –  t   ,

where

   A ≡   π _ r + τ   ; and  [r − g + ξ + τ + φ] B (n)  = ξAη  α   n+1  + φ B ̃   (n)  + ξB (n + 1)  ;

and   B ̃  (n)  is defined in Lemma 2 below.

PROOF OF LEMMA 1:
We conjecture that the value function for  low-type firms takes the form in (A3). 

Substituting this conjecture into (8), we get

  r [A  q j   + B (n)    q –  t  ]  − B (n) g   q –  t   = π  q j   + ξA   q –  t   η  α   n+1  + ξ [B (n + 1)    q –  t   − B (n)    q –  t  ] 

 − τA  q j   − τB (n)    q –  t  

 + φ [A  q j   +   q –  t   B ̃   (n)  − A  q j   − B (n)    q –  t  ]  .

Equating the coefficients on   q j    and    q –  t   , we obtain

  rA  q j   = π  q j   − τA  q j    ;
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and

  rB (n)    q –  t   − B (n) g   q –  t   = ξA   q –  t   η  α   n+1  +   q –  t   ξ [B (n + 1)  − B (n) ] 

 − τB (n)    q –  t   +   q –  t   φ [ B ̃   (n)  − B (n) ]  .

Solving these equations for  A  and  B(n) , taking   B ̃  (n)  as given (it will be determined 
in Lemma 2) completes the proof. ∎

The form of the value function in (A3) is intuitive. It depends linearly on current 
productivity,   q j   , which determines the current flow of profits. It also depends on 
current  economy-wide technology,    q –  t   , since all innovations, including incremental 
ones, build on this. Finally, it is decreasing in  n  (because  B(n)  is decreasing as we 
will see) since a higher  n  implies that the next incremental innovation will increase 
productivity by less.

Next, substitute (11) into (9) to obtain a simplified form of the value function of 
a product line operated by a  high-type firm as

  r  V H   ( q j  , n)  −   V ̇   H   ( q j  , n) 

   = max {π  q j   + ξ [ V H   ( q j   +   q –  t   η  α   n+1 , n + 1)  −  V H   ( q j  , n) ] ;

 π  q j   + Λ  θ H     q –     a   ∗   E  V H   (  q –  t  ) } 

 − τ  V H   ( q j  , n)  + ψΛ  θ H   E  V H   (  q –  t  )  .

We next characterize the solution to this value function and also determine the 
allocation of managers to different product lines (and to incremental and radical 
innovations).

LEMMA 2: The value function in (9) takes the following form

(A4)   V H   ( q j  , n)  = A  q j   +   q –  t   B ̃   (n)  ,

where  A  and  B(n)  are as defined in Proposition 1 and   B ̃  (n)  is given by

(A5)   [r − g + τ]  B ̃   (n)  = ψ [A (1 + η)  +  B ̃   (0) ] 

 +  
{

 
ξ [ A ̃  η  α   n+1  +  B ̃   (n + 1)  −  B ̃   (n) ] 

  
for n <  n   ∗ 

     
Λ  θ H     q –     a   ∗   [ (1 + η)  A ̃   +  B ̃   (0) ]  

  
for n ≥  n   ∗ 

    ,

where

(A6)   n   ∗  =   min  
 n ′   ∈ ℤ +  

  
 
    n ′   
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such that

  ξ [Aη  α    n ′  +1  +  B ̃   ( n ′   + 1)  −  B ̃   ( n ′  ) ]  ≤ Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ]  .

PROOF OF LEMMA 2:
We now conjecture that the value function for  high-type firms takes the form in 

(A4) and substitute this into (9) to obtain

  (r + τ)  [A  q j   +   q –  t   B ̃   (n) ]  − g   q –  t   B ̃   (n)  = π  q j   + ψΛ  θ H   [A   q –  t   + Aη   q –  t   +   q –  t   B ̃   (0) ] 

 + max {  q –  t   ξ [Aη  α   n+1  +  B ̃   (n + 1)  −  B ̃   (n) ] ;

 Λ  θ H     q –     a   ∗   [A   q –  t   + Aη   q –  t   +   q –  t   B ̃   (0) ] }  .

Once again equating coefficients, we obtain  A = π/(r + τ)  and

(A7)     (r − g + τ)  B ̃   (n)  = ψΛ  θ H   [A (1 + η)  +  B ̃   (0) ] 

 + max {ξ [Aη  α   n+1  +  B ̃   (n + 1)  −  B ̃   (n) ] ;

 Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] }  .

Let us next define   B ˆ  (n)  as the solution to the equation

   (r − g + τ)  B ˆ   (n)  = ψΛ  θ H   [A (1 + η)  +  B ̃   (0) ] 

 + ξ [Aη  α   n+1  +  B ˆ   (n + 1)  −  B ˆ   (n) ]  .

Under the hypothetical scenario where the  max  operator in (A7) always picks the 
first term, we have   B ̃  (n) =  B ˆ  (n) . Collecting terms,

(A8)   B ˆ   (n)  = β  ψ ˆ   / ξ + βAη  α   n+1  + β B ˆ   (n + 1)  ,

where  β = ξ/(r − g + τ + ξ)  and   ψ ˆ   = ψΛ  θ H  [A(1 + η) +  B ̃  (0)] . Note that (A8) 
defines a contraction (in particular, it satisfies the monotonicity and discounting 
sufficient conditions of Blackwell, e.g., theorem 3.3 in Stokey, Lucas, and Prescott 
1989). Since, in addition,  βAη  α   n+1   is strictly decreasing in  n ,   B ˆ  (n)  is strictly 
decreasing as well (e.g., theorem 4.7 in Stokey, Lucas, and Prescott 1989). Now 
if   n   ∗  = ∞  (meaning that incremental innovations were always optimal), then we 
would have   B ̃  (n) =  B ˆ  (n) .

The other option in the  max  operator,  Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] , does not depend 

on  n  and is strictly positive. Moreover, note that for  n  large,   B ˆ  (n)  limits to    
 ψ ˆ  
 _ r − g + τ    .  

This is strictly less than what a firm can obtain by switching to radical innovation at  n , 

  B ̃  (n) =   
 ψ ˆ   + Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)]   ____________________  r − g + τ    . Therefore, there exists a smallest integer   n   ∗   (which 
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could be zero) such that  ξ[Aη  α   n+1  +  B ̃  (n + 1) −  B ̃  (n)] > Λ  θ H     q –     a   ∗  [(1 + η)A + 
 B ̃  (0)]  for all  n <  n   ∗  , which verifies the definition of   n   ∗   in (A6). By the definition 
of   n   ∗  , we have that  ξ[Aη  α    n   ∗ +1  +  B ̃  ( n   ∗  + 1) −  B ̃  ( n   ∗ )] ≤ Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] . 
Now there are two cases to consider:

 (1)  ξ[Aη  α    n   ∗ +1  +  B ̃  ( n   ∗  + 1) −  B ̃  ( n   ∗ )] < Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] . Then, at   n   ∗   
it is strictly optimal to switch to radical innovation, and thus   λ  n   ∗    = 1 .

 (2)  ξ[Aη  α    n   ∗ +1  +  B ̃  ( n   ∗  + 1) −  B ̃  ( n   ∗ )] = Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] . In this case, 
firms are indifferent between incremental and radical innovation at   n   ∗  , and 
thus   λ  n   ∗    ∈ [0, 1] .

We summarize these two cases with the complementary slackness condition

(A9)      λ  n   ∗    ≤ 1, Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] 

 − ξ [Aη  α    n   ∗ +1  +  B ̃   ( n   ∗  + 1)  −  B ̃   ( n   ∗ ) ]  ≥ 0 

and

   [Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ]  − ξ [Aη  α    n   ∗ +1  +  B ̃   ( n   ∗  + 1)  −  B ̃   ( n   ∗ ) ] ] 

 ×  (1 −  λ  n   ∗   )  = 0 .

Observe also that with the same argument we used for   B ˆ  (n) ,   B ̃  (n)  can be proved 
to be (weakly) decreasing in  n  as claimed following the Proof of Lemma 2 (since 
  B ̃  (n)  is defined by a contraction that maps decreasing functions into themselves).

Finally, we prove that   λ n   = 1  for all  n >  n   ∗  . Suppose not. To obtain a contra-
diction, define   b ̃  (n) = Aη  α   n  +  B ̃  (n) −  B ̃  (n − 1) , and subtract (A7) lagged once 
from itself, which gives

(A10)   (r − g + τ)  b ̃   (n)  + max {ξ b ̃   (n) ; Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] } 

  =  (r − g + τ) Aη  α   n  + max {ξ b ̃   (n + 1) ; Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] }  .

We next verify that   b ̃  (n)  is a contraction over the set of continuous functions that 
are decreasing in  n . To show that it is a contraction, we just verify the sufficiency 
conditions of Blackwell (e.g., theorem 3.3 in Stokey, Lucas, and Prescott 1989). Let 
the  left-hand side of (A10) be denoted by  F( b ̃  (n)) . Clearly,  F  is strictly monotone 
and thus has a strictly monotone inverse   F   −1  . Then, (A10) can be written as

(A11)     b ̃   (n)  =  F   −1  [ (r − g + τ) Aη  α   n 

 + max {ξ b ̃   (n + 1) ; Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] } ]  ,
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and thus

   b ̃   ( ⋅ )  = T ( b ̃   ( ⋅ ) )  ,

where the operator  T : D( ℤ +  ) → D( ℤ +  )  is defined by the  right-hand side of the 
previous expression and  D( ℤ +  )  is the set of decreasing continuous functions over   
ℤ +   . Since  (r − g + τ)Aη  α   n   is strictly decreasing and   F   −1   is increasing,  T  maps 
decreasing continuous functions into themselves (and in fact, it maps them into 
strictly decreasing functions). That  T  satisfies monotonicity is immediate.

To see that it satisfies the discounting condition as well, we will show that for 
any  c > 0 ,  T( b ̃  ( ⋅ ) + c) ≤ T( b ̃  ( ⋅ )) + βc  for some  β < 1 . First, suppose that 
 ξ b ̃  (n + 1) + ξc ≤ Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)]  (case (i)). In this case,

(A12)    T ( b ̃   (n + 1)  + c)  =  F   −1  [ (r − g + τ) Aη  α   n  + Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] ] 

 = T ( b ̃   (n + 1) )  .

(Note that here we are using  T( b ̃  (n + 1))  to designate the value of   b ̃  (n)  as given by 
(A11) evaluated at a specific  n , while  T( b ̃  ( ⋅ ))  denotes the entire mapping).

Suppose, alternatively, that we are in case (ii), where  ξ b ̃  (n + 1) + ξc 
> Λ  θ H   A   q –     a   ∗  [(1 + η)A +  B ̃  (0)] . In this case, since   b ̃  (n)  is decreasing, the fact 
that  ξ b ̃  (n + 1) + ξc > Λ  θ H   A   q –     a   ∗  [(1 + η)A +  B ̃  (0)]  implies that  ξ b ̃  (n) + ξc 
> Λ  θ H   A   q –     a   ∗  [(1 + η)A +  B ̃  (0)] , and thus

(A13)   T ( b ̃   (n)  + c)  =  F   −1  [ (r − g + τ) Aη  α   n  + ξ b ̃   (n + 1)  + ξc] 

 =   
r − g + τ ____________  

r − g + τ + ξ   Aη  α   n  +   
ξ ____________  

r − g + τ + ξ    b ̃   (n + 1) 

 +   
ξ ____________  

r − g + τ + ξ   c

 ≤ T ( b ̃   (n + 1) )  +   
ξ ____________  

r − g + τ + ξ   c ,

where the second line follows from the observation just proceeding the equation, 
since in this case,   F   −1 (b) = b / (r − g + τ + ξ ) , and the fourth line follows because

    T ( b ̃   (n + 1) )  =  F   −1  [ (r − g + τ) Aη  α   n 

 + max {ξ b ̃   (n + 1) ; Λ  θ H     q –     a   ∗   [ (1 + η) A +  B ̃   (0) ] } ] 

 ≥  F   −1  [ (r − g + τ) Aη  α   n  + ξ b ̃   (n + 1) ]  .

Therefore, combining cases (i) and (ii), i.e., (A12) and (A13), we have that

  T ( b ̃   ( ⋅ )  + c)  ≤ T ( b ̃   ( ⋅ ) )  +   
ξ ____________  

r − g + τ + ξ   c .
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Then, by setting  β = ξ/(r − g + τ + ξ) < 1 , the discounting condition follows.
We thus conclude that   b ̃    is a decreasing continuous function. Moreover, because  T  

maps decreasing functions into strictly decreasing functions,   b ̃    is in fact strictly 
decreasing. Next, by the definition of   n   ∗  ,   b ̃  ( n   ∗ ) ≤ Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] , and 
since   b ̃    is strictly decreasing, we have   b ̃  ( n   ∗  + 1) < Λ  θ H     q –     a   ∗  [(1 + η)A +  B ̃  (0)] . But 
this yields a contradiction with   λ  n   ∗ +1   < 1 , establishing the desired result. ∎

The intuition for this  high-type value function is similar to that for Proposition 1, 
except that the dependence on the number of prior innovations in the current tech-
nology cluster,  n , is more complicated since when  n  exceeds   n   ∗  , a  high-type firm 
will switch to radical innovation. This critical value   n   ∗   is given by (A6) as the small-
est integer such that pursuing incremental innovations is no longer strictly optimal.

Proposition 1 then follows directly from Lemmas 1 and 2. ∎

The derivation of the stationary distribution and proof of existence of general 
equilibrium are provided in online Appendix B.

PROOF OF PROPOSITION 2:
The value of a product line operated by low- and  high-type firms can now be 

written, respectively, as

  r  V L   ( q j  , n)  −   V ̇   L   ( q j  , n)  =  max  
a
  

 
   {π  q j   +   q –  t   f (a)  −  w a,t  } 

 + ξ [ V L   ( q j   +  η n+1  , n + 1)  −  V L   ( q j  , n) ]  − τ  V L   ( q j  , n) 

 + φ [ V H   ( q j  , n)  −  V L   ( q j  , n) ]  

and

 r  V H   ( q j  , n)  −   V ̇   H   ( q j  , n) 

  = max {π  q j   +  max  
a
  

 
   {  q –  t   f (a)  −  w a,t   + ξ [ V H   ( q j   +  η n+1  , n + 1)  −  V H   ( q j  , n) ] } ;

 π  q j   +  max  
a≥0

  
 
   {  q –  t   f (a)  + Λ θ H     q –    a  E  V H   (t)  −  w a,t  } } 

 − τ  V H   ( q j  , n)  + ψΛ  θ H   E  V H   (t)  .

Here note that, with a slight abuse of notation, we wrote  E  V H  (t)  instead of  E  V H  (  q –  t  )  
for the value of a new radical innovation since this depends in general not just on 
average current productivity in the economy,    q –  t   , but also on the distribution of prod-
uct lines across different states. All the same, in the stationary equilibrium it will 
clearly grow at the same rate as    q –  t   ,  g . Second,   η n    is now a function of both the current 
productivity of the firm and the average current productivity in the economy,    q –  t   .
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With an argument similar to that in the previous subsection, the equilibrium wage 
schedule for managers will be given by

   w a,t   =  
{

 
f (a)    q –  t   

  
for a >  a   ∗ 

     
f (a)    q –  t   + Λ  θ H   [  q –    a  −   q –     a   ∗  ] E  V H   (t) 

  
for a ≤  a   ∗ 

    .

This enables us to write simplified versions of the value functions as

  r  V L   ( q j  , n)  −   V ̇   L   ( q j  , n)  = π  q j   + ξ [ V L   ( q j   +  η n+1  , n + 1)  −  V L   ( q j  , n) ] 

 − τ  V L   ( q j  , n)  + φ [ V H   ( q j  , n)  −  V L   ( q j  , n) ]  

and

  r  V H   ( q j  , n)  −   V ̇   H   ( q j  , n)  = max {π  q j   + ξ [ V H   ( q j   +  η n+1  , n + 1)  −  V H   ( q j  , n) ] ;

 π  q j   + Λ  θ H     q –     a   ∗   E  V H   (t) } 

 − τ  V H   ( q j  , n)  + ψΛ  θ H   E  V H   (t)  .

Writing explicitly   η n+1,t  ( q n,t  )  as the incremental improvement in productivity 
starting from quality   q n,t    that has been improved  n  times already and average quality 
in the economy is    q –  t    (subsumed in the time argument  t ), we have

     (r + τ)   V H   ( q n,t  , n)  −   V ̇   H   ( q n,t  , n) 

     = π  q n,t   + max {ξ [ V H   ( q n,t   +  η n+1,t   ( q n,t  ) , n + 1)  −  V H   ( q n,t  , n) ] ;

 Λ  θ H     q –    a  E  V H   (t) } 

 + ψΛ  θ H   E  V H   (t)  .

The threshold number of incremental innovations as a function of current produc-
tivity,   n  t  

∗ (q)  equivalently defines a threshold value of productivity   q  n,t  
∗    as a function 

of the number of incremental innovations. Clearly, this threshold productivity level 
is defined as the value that sets the two terms in the  max  operator equal to each other. 
Thus,

(A14)   V H   ( q  n,t  
∗   +  η n+1,t   ( q  n,t  

∗  ) , n + 1)  −  V H   ( q  n,t  
∗  , n)  =   

Λ  θ H     q –    a 
 ______ ξ   E  V H   (t)  ,

and at this value, we also have

(A15)    (r + τ)   V H   ( q  n,t  
∗  , n)  −   V ̇   H   ( q  n,t  

∗  , n)  = π  q  n,t  
∗   + Λ  θ H     q –    a  E  V H   (t) 

 + ψΛ  θ H   E  V H   (t)  .
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Now we will consider two alternative cases:

Case 1:

(A16)   q  n+1,t  
∗   ≥  q  n,t  

∗   +  η n+1,t   ( q  n,t  
∗  )  .

This condition implies that if a particular  high-type firm finds it optimal to switch 
to radical innovation today but instead undertakes a successful incremental innova-
tion (as a deviation  off-the-equilibrium path), then subsequently it will still want to 
immediately switch to radical innovation.

Under this case, we have

(A17)    (r + τ)   V H   ( q  n,t  
∗   +  η n+1,t   ( q  n,t  

∗  ) , n + 1)  −   V ̇   H   ( q  n,t  
∗   +  η n+1,t   ( q  n,t  

∗  ) , n + 1) 

   = π  q  n,t  
∗   + π  η n+1,t   ( q  n,t  

∗  )  + Λ  θ H     q –    a  E  V H   (t)  + ψΛ  θ H   E  V H   (t)  .

This follows from the fact that, by definition, in this case, at   q  n,t  
∗   +  η n+1,t  ( q  n,t  

∗  ) , the 
firm will want to switch to radical innovation.

Now differentiating (A14) with respect to time, we have

(A18)    V ̇   H   ( q  n,t  
∗   +  η n+1,t   ( q  n,t  

∗  ) , n + 1)  −   V ̇   H   ( q  n,t  
∗  , n)  =   

Λ  θ H     q –    a 
 ______ ξ   ∂ E  V H   (t)  / ∂ t

 =   
Λ  θ H     q –    a 

 ______ ξ   gE  V H   (t)  ,

where, in the second line, we have used the fact that in a stationary equilibrium  E  V H  (t)  
grows at the rate  g . Subtracting (A15) from (A17) and using (A18), we obtain

(A19)   (r + τ)  [ V H   ( q  n,t  
∗   +  η n+1,t   ( q  n,t  

∗  ) , n + 1)  −  V H   ( q  n,t  
∗  , n) ] 

   = π  η n+1,t   ( q  n,t  
∗  )  +   

Λ  θ H     q –    a 
 ______ ξ   gE  V H   (t)  .

Then, combining (A14) and (A19), we can derive

(A20)  π  η n+1,t   ( q  n,t  
∗  )  =   

r − g + τ _ ξ   Λ  θ H     q –    a  E  V H   (t)  .

In this case, for all  q  less than   q  n,t  
∗    , it is optimal to switch to radical innovation.

Now let us define

(A21)   v t   ≡   
r − g + τ _ πξ   Λ  θ H     q –    a  E  V H   (t)  ,

which is independent of both  q  and  n . Using (A21), equation (A20) can be written as

(A22)   [κ   q –  t   +  (1 − κ)   q  n,t  
∗  ] η  α   n+1  =  v t    ,

or

(A23)   q  n,t  
∗   =   

 v t   / η  α   n+1  − κ   q –  t    _____________ 
1 − κ    .
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This equation implies that   q  n,t  
∗    is increasing in  n  or equivalently that   n  t  

∗ (q)  is increas-
ing in  q .

We next derive the condition under which (A16) indeed applies. For this reason, 
note that from (A22) written for  n + 2  incremental innovations, we have

(A24)   q  n+1,t  
∗   =   

 v t   / η  α   n+2  − κ   q –  t    _____________ 
1 − κ    .

Combining equations (A23) and (A24), we obtain that (A16) is satisfied if

(A25)   (1 − κ) η  α   n+2  + α ≤ 1 .

Thus, whenever (A25) holds (and we are in Case 1), we have the desired result 
that   n  t  

∗ (q)  is increasing in  q . We next establish that whenever the converse of (A25) 
holds, the same result applies.

Case 2:

(A26)   q  n+1,t  
∗   −  η n+1,t   ( q  n,t  

∗  )  <  q  n,t  
∗    .

This implies that if a  high-type firm is indifferent between radical and incremental 
innovation at  n +  1   st   prior incremental innovations at time  t , then it would have 
preferred to switch to radical innovation at  n th  prior incremental innovations. This 
condition is clearly the complement of (A16).

In this case, start with   q  n+1,t  
∗    , which satisfies (A17). Under condition (A26), 

  q  n,t  
∗    satisfies (A15), so we again arrive at (A14), (A20), and (A23). But then from 

(A23)   q  n,t  
∗    is increasing in  n  or   n  t  

∗ (q)  is increasing in  q .
We next verify that Case 2 applies for the complement of the parameter values 

for which (A25) holds. Note that the same expressions for   q  n+1,t  
∗    as in (A24) again 

apply under Case 2. Thus, the condition for (A26) to be satisfied, with an identical 
argument, is

   (1 − κ) η  α   n+2  + α > 1 ,

which is indeed the complement of (A25).
Consequently, regardless of whether (A25) or its converse holds, equation (A23) 

applies, and   q  n,t  
∗    is increasing in  n  (or equivalently,   n  t  

∗ (q)  is increasing in  q ). This 
completes the proof. ∎

A2. Citation Patterns

The next example provides more details on the evolution of technology clusters and 
the citation patterns for the patents related to the incremental and radical innovations. 
It illustrates that radical innovations, which create new technology clusters, tend to 
receive more citations and have greater “generality”—implications we will investi-
gate in our empirical work.
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Example 1: The following chart provides an illustrative example focusing on two 
product lines:

 First product line:  

|
  |  
|
        η 0   

⏟
    

 P  1  
 f 1   

         η 1   
⏟

    
 P  2  

 f 1   

         η 2   
⏟

    
 P  6  

 f 1   

      

⏟

   

Tech Cluster 1

       

|
  |  
|
         η 0   

⏟
    

 P  10  
 f 3    

          η 1   
⏟

    
 P  11  

 f 3    

      

⏟

   

Tech Cluster 2

       

|
  |  
|
         η 0   

⏟
    

 P  12  
 f 4    

          η 1   
⏟

    
 P  13  

 f 4    

          η 2   
⏟

    
 P  14  

 f 4    

      

⏟

   

Tech Cluster 3

      

 Second product line:  

|
  |  
|
        η 0   

⏟
    

 P  3  
 f 2   

         η 1   
⏟

    
 P  4  

 f 2   

         η 2   
⏟

    
 P  5  

 f 2   

      

⏟

   

Tech Cluster 1

       

|
  |  
|
        η 0   

⏟
    

 P  7  
 f 1   

         η 1   
⏟

    
 P  8  

 f 1   

         η 2   
⏟

    
 P  9  

 f 1   

      

⏟

   

Tech Cluster 2

      

Here   P  n  
 f m     denotes patent  n  belonging to firm   f m    , and   η n    denotes its step size as 

described in equation (5). In this example,   P  1  
 f 1   ,    P  3  

 f 2   ,  P  7  
 f 1   ,    P  10,  

 f 3      and   P  12  
 f 4      are radical inno-

vations starting new technology clusters and come from  high-type firms (   f 1  ,  f 2  ,  f 3  , 
and   f 4   ) operating in other product lines. The productivity improvement due to these 
patents is   η 0   . Incremental innovations then take place within these technology clus-
ters. For instance,   P  2  

 f 1     and   P  6  
 f 1     are incremental innovations in cluster 1 by firm   f 1    , 

increasing productivity by step sizes   η 1    and   η 2   <  η 1  ,  respectively.
It is natural to assume that each incremental innovation will cite all previous 

innovations in its technology cluster, which is the pattern shown in the next figure.

Citation Network

Note: This example illustrates the citations received by patents   P  1  
 f 1   , P  2  

 f 1   , P  3  
 f 2   , and  P  4  

 f 2    .

P1
f1

P2
f1 P3

f2

P4
f2

P5
f2

P6
f1

P7
f1

P8
f1P9

f1

P10
f3

P11
f3

P1
f1
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In addition, because a radical innovation is recombining ideas from its own prod-
uct line and the product line on which it is building, it will cite the fundamental 
ideas encapsulated in the patents that initiated the two technology clusters. For this 
reason, as shown in the figure above,   P  7  

 f 1     cites the patents in the technology cluster 
over which it is innovating as well as the patents initiating its technology   clus-
ter of origin and its destination technology cluster,   P  1  

 f 1     and   P  3  
 f 2    , respectively, while   

P  1  
 f 1     receives cites from incremental innovations within its technology cluster, from 

new radical innovations on this product line, and from radical innovations based on 
this technology taking place in other product lines. As a result, a radical innovation 
tends to receive more citations as well as more “general” citations; it will also be 
heavily overrepresented among “tail innovations,” meaning among patents receiv-
ing the highest number of citations. These are the patterns we will explore in our 
empirical work.
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- Additional Graphs and Tables -

Figure B1: Estimated age dummies for the creative innovation variables (innovation quality, superstar
fraction, tail innovations, and generality), and the associated fitted line. These figures repeat the regres-
sions from Table 2, where CEO age is introduced as an array of discrete dummies instead of a linear
regressor, and plot the estimated coefficients for the 21 age bins between ages of 40 and 60. The label 40
stands for all ages less than or equal to 40, and 60 stands for all ages greater than or equal to 60. See
text and notes to Table 1 for variable definitions.
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Table B1: Innovation Quality — Including Controls Incrementally

Innovation Innovation Innovation Innovation

Quality Quality Quality Quality

CEO age -0.172 -0.161 -0.176 -0.171
(0.079) (0.078) (0.084) (0.075)

log patent -0.328 -0.080 -0.222 -0.364
(0.187) (0.294) (0.298) (0.294)

log employment -0.335 -1.633 -1.172
(0.353) (0.884) (0.852)

log sales 1.416 1.453
(0.826) (0.813)

firm age -0.075
(0.025)

N 7,170 7,170 7,170 7,170

Notes: Weighted firm-level panel regressions with annual observations with number of patents

(in that year) as weights. The dependent variable is innovation quality. The key right-hand

side variable is average CEO age (constant over time). Robust standard errors clustered at the

firm level are in parentheses. A full set of four-digit SIC dummies, and year dummies (and

thus no firm dummies) are included as controls. Different from the baseline specification in Ta-

ble 2, we add the control variables incrementally. See text and notes to Table 1 for variable definitions.
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Table B2: Cross-Sectional Regressions — Further Robustness

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Balanced Sample

CEO age -0.267 -0.295 -0.111 -0.185
(0.092) (0.140) (0.042) (0.053)

N 297 297 297 297

Panel B: With Average Manager Age

average manager age -0.267 -0.536 -0.113 -0.209
(0.117) (0.184) (0.050) (0.079)

N 7,170 7,170 7,170 6,286

Panel C: High-Tech Subsample

CEO age -0.147 -0.274 -0.083 -0.180
(0.095) (0.156) (0.036) (0.050)

N 2,100 2,100 2,100 1,901

Panel D: Low-Tech Subsample

CEO age -0.236 -0.422 -0.062 -0.155
(0.090) (0.121) (0.030) (0.079)

N 5,070 5,070 5,070 4,385

Panel E: Non-Pharmaceuticals Subsample

CEO age -0.157 -0.307 -0.077 -0.174
(0.072) (0.132) (0.031) (0.045)

N 6,662 6,662 6,662 5,860

Notes: Weighted firm-level panel regressions (without fixed effects) with annual observations with number of patents

(in that year) as weights unless stated otherwise. The dependent variables are innovation quality, superstar fraction,

tail innovation, and generality. The key right-hand side variable is average CEO age (constant over time). Each panel

is for a different specification. Unless otherwise stated, all regressions control for firm age, log employment, log sales,

log total patents, year dummies, and four-digit SIC dummies. Robust standard errors clustered at the firm level are in

parentheses. Panel A displays a cross-sectional regression where all variables are the averages over the years 1995-2000

for a balanced sample of 279 firms. Panel B uses average manager age instead of CEO age. Panels C and D are for the

high-tech and low-tech subsamples. High-tech subsample includes all firms with a primary industry classification of SIC

35 (industrial and commercial machinery and equipment and computer equipment) and 36 (electronic and other electrical

equipment and components), while the low-tech subsample includes the rest. Panel E repeats the regression on Table

2 while dropping the pharmaceutical sector from the sample (SIC 283). See text and notes to Table 1 for variable definitions.
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Table B3: Cross-Sectional Regressions Controlling for Recent Patent Flows

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.190 -0.335 -0.083 -0.167
(0.084) (0.134) (0.033) (0.043)

firm age -0.074 -0.103 -0.016 -0.016
(0.025) (0.036) (0.008) (0.017)

log employment -0.932 -2.065 -0.335 -1.200
(0.805) (1.172) (0.242) (0.654)

log sales 1.742 2.252 0.305 1.222
(0.788) (1.101) (0.226) (0.564)

log patent (3 yrs) -0.957 -0.435 -0.017 0.063
(0.312) (0.542) (0.086) (0.232)

N 7,170 7,170 7,170 6,286

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights.

The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The key right-hand

side variable is average CEO age (constant over time). Robust standard errors clustered at the firm level are in

parentheses. A full set of four-digit SIC dummies, and year dummies (and thus no firm dummies) are included as

controls. Different from the baseline specification in Table 2, we replace the log patent control variable with the natu-

ral logarithm of the patents created by the firm in the past three years. See text and notes to Table 1 for variable definitions.

Table B4: Cross-Sectional Regressions with Heckman Two-Step Estimation

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.087 -0.196 -0.039 -0.064
(0.039) (0.042) (0.018) (0.031)

has any patents has any patents has any patents has any patents

CEO age -0.000 -0.000 -0.000 -0.000
(0.002) (0.002) (0.002) (0.002)

N 19,708 19,708 19,708 19,708

Notes: Heckman two-step estimation results for the cross-sectional regressions in Table 2. The dependent variables are

innovation quality, superstar fraction, tail innovation, and generality. The key right-hand side variable is average CEO

age (constant over time). The sample includes all Compustat firms regardless of whether they generate any patents. The

selection criterion is whether a firm generated any patents in a given year. The control variables for the first stage are firm

age, log employment, log sales, and R&D intensity. The control variables for the second stage are the same as in Table 2.

See text and notes to Table 1 for variable definitions.

Table B5: Cross-Sectional Regressions — Time Since IPO ≥ 10 Years

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.192 -0.384 -0.081 -0.184
(0.077) (0.125) (0.030) (0.044)

N 5,303 5,303 5,303 4,639

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as

weights. The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The

key right-hand side variable is average CEO age (constant over time). Robust standard errors clustered at the firm

level are in parentheses. A full set of four-digit SIC dummies, and year dummies (and thus no firm dummies) are

included as controls. Different from the baseline specification, we exclude observations if the firm’s initial public

offering is more recent than 10 years. See text and notes to Table 1 for variable definitions.
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Table B6: Cross-Sectional Regressions — Alternative Measures

Innovation Quality Superstar Fraction Tail Innovation Originality
(5 years) (Best Patent) (90/0)

Panel A: Weighted

CEO age -0.103 -0.597 -0.161 -0.278
(0.053) (0.336) (0.063) (0.102)

N 4,606 7,170 7,170 7,150

Panel B: Unweighted

CEO age -0.058 -0.260 -0.140 -0.036
(0.045) (0.097) (0.068) (0.052)

N 4,606 7,170 7,170 7,150

Tail Innovation Employment Sales R&D
(99/50) Growth Growth Intensity

Panel C: Weighted

CEO age -0.105 -0.120 -0.152 -5.366
(0.045) (0.137) (0.130) (9.626)

N 5,852 5,472 5,472 5,966

Panel D: Unweighted

CEO age -0.070 -0.162 -0.193 -40.141
(0.041) (0.080) (0.089) (87.639)

N 5,852 5,472 5,472 5,966

First Second Internal
Renewal Renewal Innovation

Panel E: Weighted

CEO age -0.259 -0.268 0.818
(0.078) (0.101) (0.924)

N 7,170 7,170 7,150

Panel F: Unweighted

CEO age -0.040 -0.145 0.279
(0.067) (0.094) (0.398)

N 7,170 7,170 7,150

Notes: Firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables in Panels A and B are alternative measures of innovation quality (computed over the next five years),

superstar fraction (with superstars defined according to the best patent), tail innovation (with share of the patents of the

firm among all the patents above the 90th percentile of the citation distribution in the numerator), and the originality

index. The dependent variables in Panels C and D are measures of tail innovation (with fraction of patents above the

median in the denominator), employment growth and sales growth, and R&D intensity. The dependent variables in Panels

E and F are the fraction of patents that are renewed at least once (first renewal, due 4 years after patent grant), renewed

at least twice (second renewal, due 8 years after patent grant), and the fraction of internal innovations where a patent is

classified as an internal innovation if more than half of its backward citations are self-citations. The key right-hand side

variable is average CEO age (constant over time). Robust standard errors clustered at the firm level are in parentheses. All

regressions control for firm age, log employment, log sales, log total patents, year dummies and a full set of dummies for

four-digit SIC industries. Regressions in Panel A and column 1 of Panel C are weighted by total patent count. Regressions

in the last three columns of Panel C are weighted by firm employment. Regressions in Panels B and D are not weighted.

See text and notes to Table 1 for variable definitions.
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Table B7: Industry-Level Panel Regressions (SIC4)

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.271 -0.144 -0.039 -0.077
(0.068) (0.056) (0.030) (0.056)

N 2,369 2,369 2,369 2,178

Notes: Industry-level panel regressions with robust standard errors. The dependent variables are innovation

quality, superstar fraction, tail innovation, and generality, which are calculated as the industry-level averages for

the four-digit SIC industries in each year. The key right-hand side variable is the CEO age, which is calculated as

the industry-level average for the four-digit SIC industries in each year. A full set of four-digit SIC dummies, and

year dummies are included as controls. See text and notes to Table 1 for variable definitions.
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Table B8: Panel Regressions (with Fixed Effects) — Further Robustness

Innovation Superstar Tail Innovation Superstar Tail

Quality Fraction Innovation Quality Fraction Innovation

Panel A: No Covariates Except Time and Firm Fixed Effects

CEO age -0.244 -0.194 -0.059 -0.161 -0.124 -0.037
(0.059) (0.063) (0.014) (0.050) (0.056) (0.010)

lead CEO age -0.163 -0.139 -0.042
(0.054) (0.046) (0.016)

N 7,170 7,170 7,170 5,472 5,472 5,472

Panel B: With Additional Controls

CEO age -0.189 -0.152 -0.049 -0.118 -0.090 -0.030
(0.045) (0.051) (0.012) (0.044) (0.049) (0.011)

lead CEO age -0.127 -0.115 -0.036
(0.048) (0.043) (0.014)

N 7,139 7,139 7,139 5,457 5,457 5,457

Panel C: With Additional Controls Plus R&D Intensity

CEO age -0.188 -0.150 -0.048 -0.117 -0.089 -0.029
(0.046) (0.052) (0.012) (0.044) (0.050) (0.011)

lead CEO age -0.128 -0.117 -0.036
(0.049) (0.044) (0.014)

R&D intensity 0.175 -1.912 1.090 1.671 -2.255 1.489
(2.790) (2.206) (0.927) (3.187) (2.893) (1.045)

N 5,951 5,951 5,951 4,762 4,762 4,762

Panel D: Non-Pharmaceuticals Subsample

CEO age -0.190 -0.155 -0.049 -0.109 -0.087 -0.028
(0.046) (0.053) (0.013) (0.044) (0.051) (0.012)

lead CEO age -0.146 -0.129 -0.039
(0.051) (0.046) (0.015)

N 6,662 6,662 6,662 5,062 5,062 5,062

Panel E: Median Regression

CEO age -0.150 -0.103 -0.021 -0.127 -0.059 -0.018
(0.013) (0.044) (0.008) (0.008) (0.063) (0.008)

lead CEO age -0.045 -0.067 -0.009
(0.008) (0.060) (0.008)

N 7,170 7,170 7,170 5,472 5,472 5,472

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables are innovation quality, superstar fraction, and tail innovation. Robust standard errors clustered at the firm level

are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of firm fixed

effects unless mentioned otherwise. Panel A repeats the regressions in Table 5 Panels B and E where all controls except year and firm

fixed effects are dropped. Panel B repeats the same regressions while introducing the additional controls profitability, indebtedness

and log physical capital. Panel C repeats the same regression as Panel B with the addition of R&D intensity as a control. Panel

D repeats the same regressions while dropping the pharmaceuticals sector from the sample (SIC 283). Finally, Panel E reports the

results of a median regression, where we first demean all observations to remove firm fixed effects. See text and notes to Table 1 for

variable definitions.
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Table B9: Panel Regressions (with Fixed Effects) — Alternative Measures

Innovation Quality Superstar Fraction Tail Innovation Originality
(5 years) (Best Patent) (90/0)

Panel A: Weighted

CEO age -0.067 -0.110 -0.212 -0.031
(0.039) (0.063) (0.052) (0.027)

N 4,606 7,170 7,170 7,150

Panel B: Unweighted

CEO age -0.077 -0.092 -0.240 -0.041
(0.055) (0.053) (0.057) (0.041)

N 4,606 7,170 7,170 7,150

Tail Innovation Employment Sales R&D
(99/50) Growth Growth Intensity

Panel C: Weighted

CEO age -0.077 0.143 0.027 0.635
(0.023) (0.196) (0.125) (3.295)

N 5,852 5,472 5,472 5,966

Panel D: Unweighted

CEO age -0.046 -0.043 0.008 148.017
(0.036) (0.075) (0.089) (121.754)

N 5,852 5,472 5,472 5,966

Notes: Firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables in Panels A and B are alternative measures of innovation quality (computed over the next five years),

superstar fraction (with superstars defined according to the best patent), tail innovation (with share of the patents of the

firm among all the patents above the 90th percentile of the citation distribution in the numerator), and the originality

index. The dependent variables in Panels C and D are measures of tail innovation (with fraction of patents above the

median in the denominator), employment growth and sales growth, and R&D intensity. The key right-hand side variable is

CEO age. Robust standard errors clustered at the firm level are in parentheses. All regressions control for log employment,

log sales, log total patents, year and firm dummies. Regressions in Panel A and column 1 of Panel C are weighted by total

patent count. Regressions in columns 2-4 of Panel C are weighted by firm employment. Regressions in Panels B and D are

not weighted. See text and notes to Table 1 for variable definitions.
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Table B10: Continuing Inventors vs New Hires — Innovation Quality

Innovation Quality Innovation Quality Innovation Quality

(All) (New Inventors) (Continuing Inventors)

CEO age -0.190 -0.207 -0.161
(0.044) (0.045) (0.042)

N 7,170 5,818 5,584
mean of dep. var. 15.9 16.9 17.4

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The dependent

variables is the innovation quality measure calculated in three different ways. The first column uses the information from all the patents

of a firm. The second column uses the information only from patents created by new inventors, where a new inventor is defined as an

inventor who has never worked for the particular firm before. The third column uses the information only from patents created by continuing

inventors. When a patent is created by a mix of new and continuing inventors, it is weighted according to the fraction of new vs. continuing

inventors, defined as the inverse of a new inventor. The key right-hand side variable is CEO age. Robust standard errors clustered

at the firm level are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of

firm fixed effects (and thus firm age and the four-digit SIC dummies are no longer included). See text and notes to Table 1 for variable definitions.

Table B11: Continuing Inventors vs New Hires — Tail Innovations

Tail Innovations Tail Innovations Tail Innovations

(All) (New Inventors) (Continuing Inventors)

CEO age -0.049 -0.052 -0.035
(0.012) (0.020) (0.023)

N 7,170 5,818 5,584
mean of dep. var 1.71 1.89 2.06

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The dependent

variables is the tail innovation measure calculated in three different ways. The first column uses the information from all the patents of a

firm. The second column uses the information only from patents created by new inventors, where a new inventor is defined as an inventor

who has never worked for the particular firm before. The third column uses the information only from patents created by continuing

inventors. When a patent is created by a mix of new and continuing inventors, it is weighted according to the fraction of new vs. continuing

inventors, defined as the inverse of a new inventor. The key right-hand side variable is CEO age. Robust standard errors clustered at

the firm level are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of firm

fixed effects (and thus firm age and the four-digit SIC dummies are no longer included). See text and notes to Table 1 for variable definitions.
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- Discussion of Assumptions and Microfoundations -

In this subsection, we discuss the role and possible microfoundations of the critical assumption underpinning the

assignment of young managers to high-type firms and to radical innovation—the comparative advantage in equation

(5).

Endogenizing human capital decisions: Our key justification for (5) is that agents acquire the knowledge

available at the time they are born. Though this was imposed as a technological feature, it can be readily endogenized

(as in Chari and Hopenhayn, 1993, or MacDonald and Weisbach, 2004). The most natural assumption here would

be that agents decide when to go to school, and an agent who goes to school for some prespecified period of time,

say an interval of length ∆ > 0, and graduates at time t acquires the frontier knowledge at that time, qt as given

in (3). Given the stationary structure of the problem, we can make two observations. First, it is always optimal for

an agent to acquire schooling immediately (rather than wait and do so at a later date).1 Second, we can also derive

a straightforward sufficient condition ensuring that an agent would never want to go back to school after this initial

schooling interval. In particular, once again starting in stationary equilibrium, if a manager of age a at time t does

not go back to school, she will have a discounted lifetime income of∫ ∞
0

e−(r+δ)s[q̄t+sf (a+ s) + max
{

ΛθH

[
q̄a+s − q̄a

∗
]
, 0
}
EVH(q̄t+s)]ds, (B1)

while if she goes back to school, her discounted lifetime income will be∫ ∞
∆

e−(r+δ)s[q̄t+sf (a+ s) + max
{

ΛθH

[
q̄s − q̄a

∗
]
, 0
}
EVH(q̄t+s)]ds. (B2)

The latter expression thus enables the agent to reduce q̄a and potentially earn more from being assigned to high-

type firms.2 However, its comparison to the previous expression makes it clear that if f(a) and ∆ are sufficiently large,

then it will not be beneficial for a manager to go back to school. For example, an upper bound for the discounted

lifetime income from schooling is

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) + ΛθH

[
1 − q̄a

∗]
EVH(q̄t+s)]ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
q̄tΛθH

[
1 − q̄a

∗
]

r + δ − g
e−∆(r+δ−g), (B3)

which assumes that after re-schooling the manager has the highest contribution to innovation forever (whereas in

reality her contribution would decline as she ages). On the other hand, the minimum lifetime incomes she would

obtain without going to school can be written as∫ ∆

0
e−(r+δ)s[q̄t+s inf f (a)]ds+

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
1 − e−(r+δ−g)∆

r + δ − g
q̄tfmin, (B4)

where fmin = inf f(a). By comparing these two expressions and noting that their first terms are identical, we obtain

a sufficient condition for any manager to never prefer to go back to school,

ΛθH

[
1 − q̄a

∗
]
< e∆(r+δ−g)fmin. (B5)

As already anticipated, this condition is satisfied when ∆ or when fmin are large.

1This is because the problem facing an agent at any two dates is identical given the stationary environment and the constant probability of death, δ,
and thus if the agent wanted to wait between time t and t′, then she would also want to wait indefinitely, violating the transversality condition.

2Notice that in writing these expressions, we are interpreting a literally as age, so that when the manager goes back to school, her age is not affected.
Alternatively, a could stand for the manager’s experience in a particular line of business, and in that case, a could also be reset when she goes back to
schooling, which would introduce an additional opportunity cost of returning to school. This does not have an important effect on the qualitative argument
here, though it may provide a better approximation to some applications.
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An alternative form of comparative advantage: We introduced the comparative advantage of young managers

in radical innovation in the simplest possible form—by assuming that they have the same productivity in incremental

innovation and greater productivity in radical innovation. Similar results would obtain as well if they have comparable

productivity in radical innovation but lower productivity in incremental innovation.

Suppose, for example, that all managers have the same rate of arrival of radical innovations given by ΛθH when they

are employed by high-type firms, but the productivity of a manager aged a in incremental innovation is ξg(a), where

g(a) is increasing. In this case, the pattern of assignment will be slightly different—it will be first the older managers

who are assigned to management, but there will still exist a critical age threshold, say a∗∗, such that managers younger

than this age will be assigned to high-type firms wishing to specialize in radical innovation. Young managers will also

earn strictly less than older managers, but radical innovations will continue to increase following a switch from older

to younger managers.

Comparative advantage from competing uses of time: Relatedly, in our baseline model, radical innovations

and the operational duties of a manager do not crowd each other out. An alternative, equally natural assumption

is that, because seeking radical innovations is time-consuming, it will interfere with the cost-reducing activities of

the manager. Under the natural and common assumption that all of these tasks have to be performed by a single

manager (i.e., it is not possible to add a separate manager for innovations), attempting radical innovations will have the

opportunity cost of reducing the other beneficial roles of the manager. Since experienced managers are more productive

at cost reduction and other operational roles, this reasoning directly implies that it will be younger managers who

have an effective comparative advantage in radical innovations, even if they are less productive in both operations and

radical innovations than older managers.

A re-combinatorial microfoundation for comparative advantage: Another microfoundation for this pat-

tern of comparative advantage is to assume that radical innovation requires recombining different ideas, while more

experienced managers will have an expertise in exploiting a specific set of well-established ideas (perhaps ideas with

which they have worked before). Such a microfoundation can be developed in a way that generates the pattern of

comparative advantage in our baseline model.

One advantage of this alternative line is that the reason why more experienced managers are better at operations,

but not as good as young managers in radical innovations, can be endogenized. Specifically, managers may choose

to invest in their ability to understand and exploit certain technologies as they age, but this could be at the expense

of remaining on top of other ideas, while younger managers may be “jacks of all trades, masters of none,” making

them less effective in running an established business, and as a result, giving them a comparative advantage in radical

innovation.

An organizational microfoundation for comparative advantage: Yet another possibility leading to the

pattern of matching in our model would come not from an intrinsic comparative advantage of young managers for

radical innovation, but from the potential conflict of interest between managers and owners. Suppose that attempting

radical innovation is more costly for managers, and it is difficult for the owners of the firm to verify that the manager

is truly attempting radical innovations. This sort of situation will create a major conflict of interest, whereby all

managers might wish to claim that they are attempting radical innovations, but in reality may shirk and go for the

easy life. If, as it seems plausible, more experienced managers are better able to control the flow of information out of

an organization and thus hide their true activities, it might be more difficult for owners to induce these experienced

managers to engage in radical innovation. It may then be cheaper and more effective to turn to more “pliable” younger

managers when there will be a switch to radical innovation.

Finite lives and risk-taking: The comparative advantage of younger managers in more radical innovations may

also come from their greater willingness to take risks, which could in turn have biological roots or may be a consequence
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of the fact that, when lives are finite, they will have longer horizon than older managers and thus tend to have greater

tolerance for risk.

Managers and inventors: We have so far abstracted from inventors, which play an important role both in

practice and in our data analysis below. A final alternative structure which leads to similar results is to assume that

it is not young managers who are important for radical innovation, but young inventors (a pattern for which we also

find support in the data). But if young inventors work better in a team with young managers, for example because

older managers would not communicate well with them or would attempt to block some of their ideas, there will again

be a pattern in which young managers are assigned to firms specializing in radical innovations.
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