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Abstract

This paper investigates the determinants of radical (“creative”) innovations– innovations
that break new ground in terms of knowledge creation. After presenting a motivating model
focusing on the choice between incremental and radical innovation, and on how managers of
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are more “open to disruption”) are significantly more likely to engage in radical innovation. Our
measures of radical innovations proxy for innovation quality (average number of citations per
patent) and creativity (fraction of superstar innovators, the likelihood of a very high number
of citations, and generality of patents). We present robust evidence that firms that have a
comparative advantage in new innovations (e.g., because they are more open to disruption)
generate more creative innovations, but we also show that once the effect of the sorting of
young managers to such firms is factored in, the (causal) impact of manager age on creative
innovations, though positive, is small.
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1 Introduction

Radical (creative) innovations play an important role in economic growth not just because of their

direct contributions to productivity but also because further innovations can build on them. Though

there are currently more than half a million patents granted by the US Patent and Trademark

Offi ce (USPTO) per year, only a handful make a fundamental contribution to society’s knowledge,

and a small fraction account for the bulk of the value created.1 For example, within the field

of drugs and medical inventions, which generated 223,452 patents between 1975 and 2001, the

median number of citations within the next five years was four (indicating that only a few other

innovations built on them). However, a few patents are much more transformative and also receive

many more citations. One was ArthroCare Corporation’s 1998 patent for “systems and methods for

selective electrosurgical treatment of body structures,”which improved a variety of existing surgical

procedures and devices used, inter alia, in arthroscopy, neurology, cosmetics, urology, gynecology

and laparoscopy/general surgery, and received 50 citations in the next five years. Similarly, in

electrical digital data processing, the median number of citations within the next five years in

this period is 14, but Sun Microsystems Inc.’s 1994 patent for “method for extracting profiles and

topics,”which was instrumental in introducing the HTML hypertext system, received 473 citations

within the five years.

Where do radical innovations come from? In this paper, we investigate one aspect of this

question, focusing on the roles of firms, managers and inventors, and the contribution of younger

managers and inventors and their sorting to firms that have a comparative advantage in radical

innovations.

We first provide a simple model of the interplay between firms that are heterogeneous in terms

of their ability to undertake radical innovation and managers. In our model, all firms can engage in

incremental innovation by building on their existing leading-edge products. In addition, high-type

firms can also attempt a radical innovation, which involves combining diverse ideas to generate a

technological improvement in a new area. We interpret high-type firms as those with a “corporate

culture”that is open to radical ideas and disruption, though there may be other aspects that make

some firms more successful in radical innovations.2 We also assume that young managers who

have more recently acquired general skills (or are less beholden to a particular type of product

or technology) have a comparative advantage in radical innovation, and in consequence, will be

1See, among others, Trajtenberg (1990), Harhoff et al. (1999) and Sampat and Ziedonis (2004) on the relationship
between citations and patent quality.

2A natural interpretation (which we favor) is to identify these high-type firms with Joseph Schumpeter’s (1934)
“creative agents”(firms, managers, entrepreneurs and inventors) that are open to disruptions and have the “mental
freedom”to deviate from existing technologies, practices and rules of organizations and societies in order to engage in
“disruptive innovations”(pp. 86-94). Nevertheless, there are other aspects that make some firms have a comparative
advantage in radical innovations and our model does not take a position on the exact source of this difference.
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hired by firms pursuing radical innovations. In our model, though incremental innovations also

increase productivity, it is the radical innovations that are the engine of growth. This is because

incremental innovations in a particular “technology cluster” run into diminishing returns (as in

Akcigit and Kerr, 2018, or Abrams et al., 2013), while radical innovations create new technology

clusters and enable another series of incremental innovations.

Our model predicts a reduced-form cross-sectional relationship between manager age and radical

innovation. But this relationship does not correspond to the causal effect of manager age on radical

innovations, because high-type firms tend to hire young managers, and thus such cross-sectional

relationships also capture the “sorting”channel. Indeed, in our model young managers sort to firms

that are both high-type and willing to undertake radical innovations.3 These forces can be seen from

the longitudinal predictions of the model: firms that hire younger managers should subsequently

have more radical innovations (for hiring a young manager is associated either with a change in a

firm’s type or a change in the firm’s innovation strategy as it runs out of productive incremental

innovation opportunities). But because high-type firms do not immediately hire a young manager

and switch to radical innovations, the increase in radical innovations typically preceeds the hiring

of a younger manager.

The model clarifies that radical innovations generate higher quality (more highly-cited) patents

and tend to be more general in terms of the range of citations they receive (because they are

expanding into new areas). This provides us with a strategy to measure the creativity of innovations

and investigate the empirical implications of the model.

Our theoretical framework also predicts another relationship we investigate empirically: prod-

ucts with higher sales will encourage high-type firms to pursue incremental innovations which build

on their existing product lines, and those with many patents will tilt things in favor of radical

innovations (because of diminishing returns).

The bulk of our paper is devoted to an empirical study of these ideas. We investigate whether

companies with younger managers, which is in part a proxy for high-type firms (or those with

greater openness to disruption), engage in more radical and creative innovations. Our empirical

work uses several different measures of radical innovations, all computed from the United States

Patents and Trademark Offi ce (USPTO) data. These are innovation quality, measured by the

average number of citations per patent; fraction of superstar innovators, which corresponds to the

fraction of patents associated with an innovator classified as a “superstar”on the basis of the number

of citations; tail innovations, which we measure as the fraction of patents of a company that are at

the 99th percentile of the overall citations distribution relative to those that are at the median, thus

3 Interestingly, in the examples of major innovations mentioned above, these were produced by companies with
unusually young leadership. The average age of top managers at ArthroCare Corporation was 41 at the time, and
only 39 at Sun Microsystem (compared to an average age of 54.84 among Compustat companies).
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capturing the likelihood of receiving a very high number of citations normalized by the “median”

number of citations; and generality index, constructed by Hall, Jaffe and Trajtenberg (2001), which

measures the dispersion of the citations that a patent receives from different technology classes.

Our empirical results provide nuanced support for the role of firms, managers and innovators

in radical innovations. On the one hand, we establish a robust cross-sectional correlation between

CEO age and all of our measures of firm-level radical innovation (with or without a variety of firm-

level controls). In summary, firms that tend to employ younger CEOs receive a greater number

of citations per patent, have a greater fraction of their patents generated by superstar innovators,

have more tail innovations, which are at the very high percentiles of the citations distribution, and

have more general patents. We also find similar results when we focus on “within-firm”variation

generated by CEO changes.

On the other hand, our results suggest that much of this relationship is due to the greater

innovativeness of high-type firms (for example, because of their greater openness to destruction and

new ideas), while younger managers have a positive but much smaller effect. First, consistent with

our theory, we find that firms switch to radical innovation even before they hire a younger manager.

Second, when we use the structure of our model in conjunction with the reduced-form patterns in

the data to estimate the causal effect of young managers on radical innovation, our estimates are

typically small– younger managers accounting for about 1% − 7% of the total amount of radical

innovation in the economy.

We further shed light on the role of innovators in the innovation process using the patent-level

variation. Our estimates here indicate that younger CEOs tend to work with younger inventors and

that younger inventors are significantly more creative and likely to generate radical innovations.

Finally, we investigate our model’s prediction that firms with greater sales and with fewer

patents should be less willing to engage in radical innovations by simultaneously including inter-

actions of CEO age with (log) sales and (log) number of patents of the firm in our regressions.

The results from this exercise support the notion that CEO age interacts negatively with sales and

positively with the number of patents.4

Our paper is related to several literatures. First, we build on and extend the literature on

the interplay between micro and macro aspects of innovation, in particular Klette and Kortum

(2004), by including a choice between radical and incremental innovations, and by incorporating

the dimension of matching between managers of different vintages of human capital and type of

4The working paper version of our work presented supporting cross-country evidence, showing that the average
age of the top managers of the 25 largest listed companies in a country is associated with greater average citations
per patent, tail innovations, superstar fraction, and generality of innovations, controlling for the total number of
patents, GDP and human capital variables at the country level. This manager age variable is strongly correlated
with individualism indices (e.g., from Hofstede, 2001).
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innovation.5 Empirical work in this area (e.g., Foster, Haltiwanger and Krizan, 2001, Lentz and

Mortensen, 2008, Akcigit and Kerr, 2018, Hurst and Pugsley, 2011, Syverson, 2011, Kogan et al.,

2012, Acemoglu et al., 2018) focuses on R&D, patent and productivity dynamics. We depart from

this literature both because of our focus on radical (creative) innovations and because we present

a detailed analysis of the relationship between creativity of innovations and manager age.

Second, MacDonald and Weisbach (2004), Gorodnichenko and Roland (2012) and Fogli and

Veldkamp (2013) are closely related to our work. MacDonald and Weisbach construct an overlap-

ping generations model in which each generation makes technology-specific human capital invest-

ments. They show that younger agents are the ones who invest in human capital complementary

to new technologies. Their framework does not incorporate innovations and thus has no distinction

between radical and incremental innovations. Gorodnichenko and Roland draw a link between in-

novation and individualism, but focus on aggregate measures of productivity, such as TFP or labor

productivity at the country level. In contrast, we start with a microeconomic model of how firms

choose their innovation strategies and how managers of different ages endogenously sort across dif-

ferent types of firms, and then exploit firm-level data on the creativity of innovations constructed

from patent citations. Fogli and Veldkamp emphasize the role of “individualistic”social networks

in the diffusion of new technologies, and explore how exposure to different types of diseases is

associated with cross-country variation in societal network structures.

Third, our work is linked to the small literature on age and creativity. Galenson and Weinberg

(1999, 2001), Weinberg and Galenson (2005), Jones and Weinberg (2011) and Jones (2010) provide

evidence that a variety of innovators and top scientists are more creative early in their careers, but

they also acquire other types of human capital (perhaps generating different types of creativity)

later on. Jones (2009) develops a model in which scientists have to spend more time mastering a

given area and have to work in teams because the existing stock of knowledge is growing and thus

becoming more diffi cult to absorb and use.6

Fourth, our work is related to the literature pioneered by Bertrand and Schoar (2003) and

Bloom and Van Reenen (2007, 2010) which investigates the relationship between CEO and manager

characteristics and firm performance. Benmelech and Frydman (2014), for example, show that

military CEOs pursue more conservative investment and financial strategies (lower investment in

R&D), are less likely to be involved in financial fraud, and perform better during times of distress.

5This matching aspect is common with theoretical analyses of the role of managers, in particular, Lucas (1978),
Garicano (2000), and Garicano and Rossi-Hansberg (2004).

6See also Sarada and Tocoian (2015), who investigate the impact of the age of the founders of a company on
subsequent performance using Brazilian data; Azoulay, Manso and Zivin (2011), who document the impact of changes
in incentives driven by large academic awards and grants on creativity; and Azoulay, Zivin and Wang (2010), who
investigate the impact of the death of a very productive co-author on academic productivity.
There is also an extensive literature in social psychology, mostly using survey and experimental evidence, on age

and various attitudes both in general and in business. See, e.g., the survey by Walter and Scheibe (2013).
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Bennedsen et al. (2008) demonstrate that the death of a CEO or shocks to the CEO that potentially

affect her focus (death of an immediate family member) impact profitability or operating returns.

Also noteworthy in this context is Barker and Mueller (2002), who show that firms with younger

CEOs spend more on R&D (though this pattern does not show up in our sample).7

The rest of the paper is organized as follows. Section 2 presents our motivating model. Section

3 describes our data. Section 4 presents our main empirical results. Section 5 concludes, while

Appendix A contains the proofs from Section 2 and some supplementary materials. Appendix B,

which is not-for-publication, presents additional figures, empirical results and discuss the possible

microfoundations of the critical assumptions we make in the theoretical model.

2 Motivating Theory

In this section, we provide a simple model of radical and incremental innovations to motivate

both the conceptual underpinnings of our approach and some of our empirical strategies. Further

discussion of assumptions and microfoundations of the model are provided in Online Appendix B1.

2.1 Production

We consider a continuous-time economy in which discounted preferences are defined over a unique

final good as
∫∞

0 e−ρt C(t)1−ν−1
1−ν dt,where ρ > 0 is the discount rate, C(t) is consumption at time t,

and ν is the inverse of the intertemporal elasticity of substitution. The final good is produced using

labor and a continuum of intermediates, each located along a circle, C, of circumference 1, via the
constant elasticity of substitution production function,

Y (t) =
1

1− β

(∫
C
qj (t)β kj (t)1−β dj

)
Lβ, (1)

where kj (t) denotes the quantity and qj (t) the quality (productivity) of the leading-edge interme-

diate j used in final good production at time t, while L is the total amount of production labor,

which is supplied inelastically. Consumption is given as C(t) = Y (t) −K(t), where K(t) denotes

total spending on intermediates.

We follow Klette and Kortum (2004) in defining a firm as a collection of leading-edge tech-

nologies. A perfectly enforced patent on each leading-edge technology is held by a firm, which can

produce it at constant marginal cost γ in terms of the final good. Because costs and revenues across

intermediates are independent, a firm will choose price and quantity to maximize profits on each

of its intermediates (which we also refer to as product lines). In doing so, it will face an iso-elastic

7See also Bandiera et al. (2019) who use CEO diary data and machine learning techniques to differentiate between
“leader”CEOs (i.e., those primarily involved in communication and coordination activities) and “manager”CEOs
(i.e., those primarily involved in production-related activities). They show that firms with leader CEOs are larger
and more productive on average.
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inverse demand derived from equation (1), which can be written, suppressing time arguments, as:

pj = Lβqβj k
−β
j ,∀j ∈ C. (2)

The profit-maximization problem of the firm with the leading-edge technology for intermediate j

can then be written as

Π (qj) = max
kj≥0
{pjkj − γkj} ∀j ∈ C subject to (2) .

The first-order condition of this maximization problem implies a constant markup over marginal

cost, pj = γ/(1− β), and thus

kj = [(1− β) /γ]
1
β Lqj . (3)

Equilibrium profits for a product line with technology qj are

Π (qj) = β [(1− β) /γ]
1−β
β Lqj

≡ πqj ,

where the second line defines the constant π.

For future reference, we denote the current period’s knowledge stock– current average

technology– by

q̄t ≡
∫
C
qjtdj. (4)

2.2 Managers

In addition to workers, the economy is populated by managers, who both play an operational role

(reducing costs for firms) and manage innovation.

Managers enter and exit the economy following a stationary Poisson birth and death process,

so that the measure of managers, M , and their age distribution is constant over time. We index

a manager by her birth date b, or equivalently by her age, a = t − b. Denoting the death rate
of managers by δ, the fact that the measure of managers is constant at M implies that the age

distribution of managers is simply given by an exponential distribution, i.e., the fraction of managers

who are below the age a is 1− e−δa.8

A manager acquires the useful knowledge associated with the average technology in the period

in which she is born (time b), giving her a knowledge base of

q̄b ≡
∫
C
qjbdj.

Managers will be hired by monopolists to manage production and innovation on their product

lines. In equilibrium, they will be paid a wage wb,t as a function of the current period’s average

8 It is also straightforward to see that denoting the birth rate of managers by δbirth, M = δbirth/δ.
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technology, q̄t, and their knowledge, q̄b. We assume that M < 1, and this implies that the measure

of managers is less than the measure of product lines in the economy, so some product lines will not

use a manager. This simplifies the analysis by providing a convenient boundary condition for the

determination of equilibrium wages of managers. We also assume that M is not too small, which

will ensure that all firms that need a manager for a “radical innovation,” as described next, are

able to hire one (one can take M → 1 without any loss of generality).

2.3 Corporate Culture and Innovation Dynamics

The economy is populated by two types of firms, with firm type denoted by θ ∈ {θH , θL} and
θH > θL. Firm type does not affect productivity directly, but influences the success of radical

innovations. In particular, high-type firms (θ = θH) are those that have a comparative advantage in

radical innovations, for example because they have corporate cultures that are open to disruption.

In contrast, we will suppose that low-type firms (θ = θL) are incapable of engaging in radical

innovations, which is captured by setting θL = 0. Firm type is initially determined upon entry (as

described in the next subsection). Thereafter, a low-type firm switches to high type at flow rate

ϕ ∈ (0, 1).9

The productivity of each intermediate product is determined by its location along a quality

ladder in a given product line. In addition, as noted above and following Klette and Kortum (2004),

each leading-edge technology gives the firm an opportunity for further innovation. Innovation

dynamics at the firm level are determined by whether the firm pursues an incremental innovation

or a radical innovation strategy.

Incremental Innovation Both types of firms can engage in incremental innovation, which im-

proves the productivity of a product line within the current technology cluster. A technology cluster

here refers to a specific family of technologies for that product line. Because incremental innova-

tions take place within this technology cluster, they run into diminishing returns. We model this by

assuming that the additional productivity improvements generated by an innovation are decreas-

ing in the number of prior incremental innovations within a technology cluster. Namely, the nth

incremental innovation in a technology cluster improves the current productivity of product line j

by a step size ηn(qj , q̄t), where qj is the current productivity of the technology, q̄t is the current

period’s technology, and

ηn(qj , q̄t) = [κq̄t + (1− κ) qj ] ηα
n (5)

with α ∈ (0, 1), η > 0, and κ ∈ (0, 1). This functional form implies two features. First, each

innovation builds both on the current productivity of the product line where it originates, with

9We assume that there are no switches from high type to low type to simplify the expressions and the analysis.
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weight 1 − κ, and on average technology, q̄t, with weight κ. Second, productivity gains from

incremental innovations decrease geometrically, at the rate α, in the number of prior incremental

innovations in the technology cluster.

We assume that all firms (regardless of their type) can successfully innovate incrementally at

the exogenous rate ξ > 0.

Radical Innovations High-type firms can also undertake radical innovations, which combine the

current technology of the product line the firm is operating, the knowledge base of the manager,

and the available knowledge stock of the economy to innovate in a new area (creatively destroying

the leading-edge technology of some other firm). Similar to Weitzman’s (1998) approach based on

recombination, this combination of knowledge bases creates a new technology cluster.

A radical innovation originating from a particular product line initiates a new technology cluster

in a different product line (and the innovating firm will still keep its original product line). The

creation of a new technology cluster provides the innovator with the opportunity to start a new series

of incremental innovations. Because radical innovations are not directed and each firm controls an

infinitesimal fraction of all products, the likelihood that it will be the firm itself radically innovating

over its own product is zero.10 Thus radical innovations are associated with “Schumpeterian creative

destruction.”We next describe the technology for radical innovations.

A successful radical innovation leads to an improvement over the product line uniformly located

on the circle C, and thus generates creative destruction. If there is a successful radical innovation
over a product line with technology qj , this leads to the creation of a new leading-edge technology

(now under the control of the innovating firm and manager), with productivity

q0
j = qj + η0,

where the superscript 0 designates the fact that a radical innovation initiates a new cluster with

no prior incremental innovations.

Managers’Role For each of their active product lines, firms hire managers who influence their

revenues in two ways. First, a manager of age a = t− b contributes q̄tf (a) to the revenues of a firm

when the aggregate technology level is q̄t (e.g., by reducing costs).11 We presume (but do not need

to impose) that f is increasing, so that more experienced managers are better at cost reductions.

If the firm hires no manager, then it does not receive this additional revenue. Second, a manager

affects the flow rate of success for firms attempting a radical innovation as we describe next.
10 It may be more plausible to assume that radical innovations also take place over a range of products that are

“technologically close”to the knowledge base of the innovator. Provided that there is a continuum of products within
this range, this modification has no impact on any of our results.
11We model this contribution as an additive element in the revenues of the firm so as not to influence the monopoly

price and quantity choices of the firm via this channel.
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A firm of type θ has a baseline flow rate of radical innovation (regardless of whether it is pursuing

radical or incremental innovations) equal to ψΛθ. In addition, if it pursues a radical innovation

strategy, hires a manager with knowledge q̄b and the current technology in the economy is q̄t, it

will generate a flow rate of radical innovation equal to

Λθq̄a, (6)

where

q̄a ≡ q̄b/q̄t

is the relative average quality of managers of age a, and Λ ∈ (0, 1] (and the superscript, rather than

a subscript, here emphasizes that this is a ratio of two averages). This specification confirms that

low-type firms, with θL = 0, cannot engage in radical innovations– i.e., both ψΛθL and ΛθL are

equal to zero.

Since both high- and low-type firms have the same rate of success, ξ, when they attempt

incremental innovations, (6) implies that high-type firms and young managers have a compara-

tive advantage in radical innovation– only high-type firms can engage in radical innovations, and

younger managers contribute to the flow rate of radical innovation with high-type firms.

The parameter Λ captures the role of institutional or social sanctions on radical innovations.

Such sanctions may prevent the implementation of certain radical innovations, thus making suc-

cessful innovations less likely.12

We close the model by assuming that new firms enter at the exogenous flow rate x > 0, and entry

corresponds to a (radical) innovation over an existing product line uniformly at random. We further

assume that a firm’s type is also drawn at random following entry: a successful entrant is high-

type, θ = θH , with probability ζ ∈ (0, 1), and is low-type, θ = θL (= 0), with the complementary

probability, 1− ζ. Thereafter, firm type evolves according to the Markov chain described above.

2.4 The Value of Innovation

Though firms in this economy have a portfolio of product lines and thus the present discounted

value of the profits of a firm will depend on this exact portfolio and its evolution, the structure of

the equilibrium is greatly simplified because the maximization problem regarding each product is

independent of the rest of the portfolio (as in related models such as Klette and Kortum, 2004, and

Acemoglu et al., 2018). More formally, let us define Ws (−→qf ,−→nf ) (for s ∈ {H,L}) as the value of a
12 In the context of our modeling of product lines along the circle C, we may assume that such sanctions permit a

firm operating product line j to successfully innovate over technologies that are suffi ciently close to itself. Suppose,
for example, that j may be allowed to innovate only on product lines that are at most a distance Λ from itself.
Then the case of no restrictions would be Λ = 1/2, so that radical innovations over any product lines on the circle
C are possible, while Λ < 1/2 would correspond to restrictions and thus lower the likelihood of successful radical
innovations.
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firm with a vector of products −→qf =
{
qf,j1 , qf,j2 , ..., qf,jmf

}
, with associated number of incremental

innovations −→nf =
{
nf,j1 , nf,j2 , ..., nf,jmf

}
.13 Thanks to this independence property, as we show in

Appendix A, firm values satisfy

Ws (−→qf ,−→nf ) =

mf∑
m=1

Vs (qj , n) , (7)

where Vs (qj , n) is the (franchise) value of a product line of productivity qj with n incremental
innovations that belongs to a firm of type s ∈ {H,L} given by

rVL (qj , n)− V̇L (qj , n) = max
a
{πqj + q̄tf (a)− wa,t}+ ξ

[
VL
(
qj + ηn+1, n+ 1

)
− VL (qj , n)

]
(8)

−τVL (qj , n) + ϕ [VH (qj , n)− VL (qj , n)] ,

and

rVH (qj , n)− V̇H (qj , n) = max

{
πqj + maxa

{
q̄tf (a)− wa,t + ξ

[
VH
(
qj + ηn+1, n+ 1

)
− VH (qj , n)

]}
;

πqj + maxa {q̄tf (a) + ΛθH q̄
aEVH (q̄t)− wa,t}

}
(9)

−τVH (qj , n) + ψΛθHEVH (q̄t) .

Here r is the equilibrium interest rate, τ is the rate of creative destruction in the economy, and

EVH (q̄t) denotes the expected value of a radical innovation when the aggregate technology level is

q̄t. The form of these value functions is intuitive and instructive about the workings of the model.

In (8), a low-type firm’s value from a product with productivity qj that has previously had n

incremental innovations depends on the flow of profits, πqj + q̄tf (a)−wa,t, and the additional value
from an incremental innovation, which arrives at the flow rate ξ and increases the productivity of

the firm with step size ηn+1. In addition, the second line of (8) captures the fact that the value

from this product will disappear at the rate of creative destruction in the economy, τ , representing

the replacement of this product by a higher-quality one, and the value of the firm may increase

because it may transition to high type at the flow rate ϕ. A high-type firm’s value in (9) is similar

except that it involves an additional choice between incremental innovation and radical innovation

as represented by the inner maximization.

2.5 Stationary Equilibrium With κ = 1

We now characterize the stationary equilibrium of this economy. We start with the case where κ = 1

in equation (5)– so that all current innovations build on current technology, q̄t (and not on the

current productivity of the existing technology cluster). This assumption considerably simplifies

the analysis, and we return to the general case where κ < 1 below.

Characterizing the Stationary Equilibrium A stationary equilibrium is defined as an equilib-

rium in which aggregate output, Yt, grows at a constant rate g, and the distribution of product lines

13Here and elsewhere, we suppress time as an explicit argument of the value functions to simplify notation.
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between high- and low-type firms and over the prior number of incremental innovations remains

stationary.

As noted above, firms decide the age of the manager to hire for each of the product lines they

are operating and whether to engage in a radical or incremental innovation. Since some firms will

not hire managers (asM < 1), all firms not attempting a radical innovation on a product line must

be indifferent between hiring and not hiring a manager for that product line, which implies that

the equilibrium wage for managers, employed by firms engaged in incremental innovations, satisfies

the boundary condition:

wa,t = q̄tf (a) . (10)

We next turn to the value of a product line operated by a high-type firm, (9). Because of the

comparative advantage of young managers for radical innovation in (6), there will exist a maximum

age a∗ such that only managers below this age will work in firms attempting radical innovation.

Moreover, the maximization over the age of the manager in (9) implies that firms engaged in radical

innovation must be indifferent between hiring any manager younger than a∗, and thus

q̄tf (a∗) + ΛθH q̄
a∗EVH(q̄t)− wa∗,t = q̄tf (a) + ΛθH q̄

aEVH(q̄t)− wa,t for all a < a∗.

The boundary condition, (10), implies that the oldest manager hired for radical innovation earns

wa∗,t = q̄tf (a∗). Hence

wa,t =

{
q̄tf (a) for a ≥ a∗

q̄tf (a) + ΛθH [q̄a − q̄a∗]EVH(q̄t) for a < a∗
. (11)

This wage schedule highlights that younger or older managers might be paid more (this will depend

on the f function): younger managers have a comparative advantage in radical innovation, but older

managers might be more productive in operating firms.14

The next proposition provides the characterization of the stationary equilibrium. It is important

to note that low-type firms (θ = θL) always hire “old”managers (those with a > a∗ or b < b∗t ),

pursue incremental innovations and never generate radical innovations.

Proposition 1 Let λn denote the probability that a high-type firm (θ = θH) pursues a radical

innovation on a product line with n incremental innovations. There exists an integer n∗ such that:

• high-type firms pursue incremental innovations, λn = 0, on product lines with n < n∗ prior

incremental innovations and hire “old”managers (those with a > a∗ or b < b∗t );

• they pursue radical innovations, λn = 1, on product lines with n > n∗; and

14The evidence in Galenson and Weinberg (1999, 2001), Weinberg and Galenson (2005) and Jones and Weinberg
(2011) is consistent with the possibility that either younger or older creative workers might be more productive.
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• they pursue radical innovations with probability λn∗ ∈ [0, 1] on product lines with n = n∗.

Whenever they pursue radical innovations, high-type firms hire “young”managers (those with

a ≤ a∗ or b ≥ b∗t ).
A lower Λ, corresponding to the society being less permissive to radical innovations, will increase

n∗ (so that a lower fraction of high-type firms will pursue radical innovation), and will reduce the

wages of young managers (because there is less demand for the knowledge of young managers).

In addition to providing the expression for the threshold n∗ and proving this proposition, Appen-

dix A also characterizes (and establishes the existence of) a stationary equilibrium in this economy.

This proposition’s implications are discussed in the next subsection. Here we simply note that,

because the threshold for switching to radical innovation, n∗, is an integer, equilibrium aggregates

are not continuous in parameters, and hence the equilibrium may involve some degree of mixing as

captured by the fact that λn∗ ∈ [0, 1].

Empirical Implications Our empirical work is inspired by Proposition 1. As explained above,

radical innovations will be associated with greater indices of our measures of radical innovations.

We will first investigate the cross-sectional relationship between manager (CEO) age and radical

innovations. In these cross-sectional regressions, manager age is taken to be a proxy for high-type

firms (for example those with a corporate culture that is more open to disruption). Therefore, from

Proposition 1, we expect a negative cross-sectional relationship between manager age and radical

innovations. As just stressed, this cross-sectional relationship does not correspond to the “causal

effect”of manager age on creativity of innovations (which would apply if we varied manager age

holding the firm’s corporate culture constant); in particular, it also reflects the sorting of younger

managers to high-type firms.

Our model’s longitudinal implications– that is, implications about how manager age and cre-

ativity of innovations vary over time for a firm– shed further light on the relative magnitudes of

the sorting and the causal effects. To understand these implications, let us consider the innovation

dynamics of firms implied by Proposition 1. Low-type firms always engage in incremental inno-

vations and never generate radical innovations. High-type firms may attempt a radical innovation

depending on how many prior incremental innovations they have had on a product line.

• For a product line with n < n∗, a high-type firm hires an old manager (or keeps its already

existing old manager) and pursues an incremental innovation strategy. Given the technology

specified above, such a firm still generates radical innovations at the rate ψΛθH .

• For a product line with n ≥ n∗, a high-type firm hires a young manager and engages in radical
innovation (with probability λn∗ for n = n∗). In this case, the average rate of radical inno-
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vation across product lines where radical innovation strategies are pursued can be computed

using the fact that the age distribution of managers is given by the exponential distribution,

as

ψΛθH +
1

F (a∗)

∫ a∗

0
ΛθH q̄

adF (a) = ψΛθH +
ΛθHδ

g + δ

[
1− e−(g+δ)a∗

]
[1− e−δa∗ ] . (12)

Now consider a low-type firm that switches to high-type, and to simplify the discussion, suppose

that it has a unique product line. Then, if this product line has had n < n∗ incremental innovations,

the firm will continue to pursue an incremental innovation strategy λn = 0, and keep its old

manager.15 In the process, it will generate radical/creative innovations at the flow rate ψΛθH .

When it reaches n = n∗, it will hire a young manager, switch to a radical innovation strategy with

probability λn∗ > 0, and at that point, its rate of radical/creative innovations will increase, on

average, from ψΛθH to the expression in (12) times λn∗ . In contrast, if the product line of the firm

at the time of switching to high-type has had n > n∗ incremental innovations, it will immediately

hire a young manager, switch to a radical innovation strategy, and generate radical innovations at

the flow rate given by (12).

This discussion clarifies that when we focus on the relationship between within-firm changes

in manager age and radical innovations, we expect to find two regularities. First, when a firm

switches from an older to a younger manager, this should be associated with an increase in radical

innovations. Second, firms that switch from an older to a younger manager should, on average,

experience an increase in radical innovations even before the switch. We emphasize that even this

further increase following the switch to a younger manager does not correspond to the causal effect

of manager age on radical innovations for two reasons; first, these firms will be simultaneously

switching to radical innovation and hiring a young manager; and second, the increase in the likeli-

hood of radical innovation will depend on the exact number of prior incremental innovations and

the age of the manager hired. For this reason, in Section 4.3 below, we estimate the causal effect

by keeping the type of the firm and the number of prior incremental innovations constant, and just

changing manager age by a given amount.

Finally, though we will not be able to investigate this directly in our empirical work, the

implications of changes in Λ are interesting. A lower value of this parameter naturally reduces

radical innovations and, at the same time, decreases the wages of young managers, thus making it

look like the society is discriminating against the young; but in fact this is a consequence of the

society discouraging radical innovations.

15Strictly speaking, this is true under an infinitesimal cost of replacing managers. Otherwise, the firm could fire
its old manager and hire another old manager, with no impact on our results or discussion here.
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2.6 Equilibrium With κ < 1

In this subsection, we turn to the general case with κ < 1. The structure of the equilibrium is

similar to the case with κ = 1, except that now the switch to radical innovation for high-type firms

will depend both on their current productivity and on their prior incremental innovations.

Proposition 2 Consider the economy with κ < 1. Then, for a product line with current quality

q operated by a high-type firm, the manager will be younger and will pursue radical innovation

when the number of prior incremental innovations is greater than or equal to n∗t (q), where n∗t (q)

is increasing in q. That is, a high-type firm is more likely to pursue radical innovation when its

current productivity is lower and the number of its prior innovations in the same cluster is higher.

This proposition thus establishes that in this generalized setup (with κ < 1), the main results

from Proposition 1 continue to hold, but in addition we obtain the new result that radical innovation

is more likely when a high-type firm has lower current productivity (conditional on its prior number

of incremental innovations); or conversely, for a given level of productivity, it is more likely when

there has been a greater number of prior incremental innovations. Intuitively, when the baseline

productivity of a product line is higher, the benefits of incremental innovations building on it

are also greater and a high-type firm will pursue such incremental innovations for longer before

switching to radical innovation. We will investigate this additional implication in our empirical

analysis as well.16

3 Data and Variable Construction

In this section, we describe the various datasets we use and our data construction. We also provide

some basic descriptive statistics.

3.1 Data Sources

USPTO Utility Patents Grant Data (PDP) The patent grant data are obtained from the

NBER Patent Database Project (PDP) and contain data for all 3,279,509 utility patents granted

between the years 1976-2006 by the USPTO. This dataset includes extensive information on each

granted patent, including the unique patent number, a unique identifier for the assignee, the na-

tionality of the assignee, the technology class, and backward and forward citations in the sample

up to 2006. Following a dynamic assignment procedure, we link this dataset to the Compustat

dataset, which we next describe.17

16This result is related to the idea of “disruptive innovations”proposed in Christensen’s The Innovator’s Dilemma
(1997). Our result clarifies that our potential answer to the innovator’s dilemma, consistent both with Arrow’s (1962)
replacement effect and the results presented below, is that successful firms with higher sales have more to fear from
disruptive innovations, and tend to retrench and become less open to creative innovations.
17Details on the assignment procedure are provided at https://sites.google.com/site/patentdataproject/.
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Compustat North American Fundamentals We draw our main sample from the Com-

pustat for publicly traded firms in North America. This dataset contains balance sheets reported

by the companies annually between 1974 and 2006. It comprises 29,378 different companies, and

390,467 company × year observations. The main variables of interest are net sales, employment,
firm age (defined as time since entry into the Compustat sample), SIC code, R&D expenditures,

total liabilities, net income, and plant property and equipment as a proxy for physical capital.

Executive Compensation Data (Execucomp) Standard and Poor’s Execucomp provides

information on the age of the top executives of a company starting from 1992. We use information

on CEO age or the average age of (top) managers of a company to construct proxies for comparative

advantage for radical innovations or openness to disruption at the firm level.18

The Careers and Co-Authorship Networks of U.S. Patent Inventors Extensive infor-

mation on the inventors of patents granted in the U.S. between years 1975-2008 is obtained from

Lai et. al.’s (2009) dataset. These authors use inventor names and addresses as well as patent

characteristics to generate unique inventor identifiers upon which we heavily draw. Their dataset

contains 8,031,908 observations at the patent × inventor level, and 2,229,219 unique inventors, and
can be linked to the PDP dataset using the unique patent number assigned by the USPTO.

3.2 Variable Construction

Innovation Quality Our baseline measure of innovation quality is the number of citations a

patent received as of 2006. We use the truncation correction weights devised by Hall, Jaffe, and

Trajtenberg (2001) to correct for systematic citation differences across different technology classes

and for the fact that earlier patents will have more years during which they can receive citations.

The average innovation quality of a company in a year is computed as the average number of

citations of patents the company applied for in that year.

Superstar Fraction A superstar inventor is defined as an inventor who surpasses his or her

peers in the quality of patents generated as observed in the sample. A score for each unique inventor

is generated by calculating the average quality of all the patents in which the inventor took part.

All inventors are ranked according to this score, and the top 5% are considered to be superstar

inventors. The superstar fraction of a company in a year is calculated as the fraction of patents

with superstar inventors in that year (if a patent has more than one inventor, it gets a fractional

superstar designation equal to the ratio of superstar inventors to the total number of inventors).

Tail Innovations The tail innovation index is defined as the fraction of a firm’s patents

that receive more than a certain number of citations. Namely, let sft(p) denote the fraction of a

firm’s patents that are above the pth percentile of the year t distribution according to citations.

18We drop observations where reported CEO age is less than 26.

15



Our baseline tail innovation index, Tailft(p), is simply sft(0.99)/sft(0), and thus measures the

fraction of patents by firm f at time t with citations above the 99th percentile. As an alternative

measure, we also consider Tailft(p) = sft(p)/sft(0.50), where p > 0.50. By including sft(0.50)

in the denominator, this alternative measure focuses on whether controlling for their “average”

innovation output, some companies generate innovations with very high citations. We also consider

our baseline index with p = 0.90 as yet another alternative measure for robustness.

Generality and Originality We also use the generality and originality indices devised by Hall,

Jaffe and Trajtenberg (2001). Let i ∈ I denote a technology class and sij ∈ [0, 1] denote the share

of citations that patent j receives from patents in technology class i (of course with
∑

i∈I sij = 1).

Then for a patent j with positive citations, we define: Generalityj = 1−
∑

i∈I s
2
ij . This index thus

measures the dispersion of the citations received by a patent in terms of the technology classes of

citing patents. Greater dispersion of citations is interpreted as a sign of greater generality. The

originality index is defined similarly except that we use the citations that a patent gives to other

patents. The patent classes used are the 80 two-digit International Patent Classification (IPC)

classes.

3.3 Sample and Descriptive Statistics

Our baseline analysis focuses on an unbalanced firm sample comprised of 7111 observations from

1256 firms between 1992 and 2004. Our data on CEO age does not extend before 1992, and we

cannot go further than 2004, since our patent citation data end in 2006 and we need at least two

post-grant years for citation analysis. We also study a larger patent sample of 316,516 patents

(from 1192 distinct firms).

Panel A of Table 1 provides descriptive statistics for our firm and patent samples. Since we focus

on regressions weighted by the number of patents held by a company, all statistics are weighted

by the number of patents as well. We multiply our indices for tail innovation, superstar fraction,

generality, and R&D intensity by 100 for ease of inspection.

The table shows that average CEO age is 55.3 in our firm sample and 55.7 in our patent sample

and there are also substantial variations (standard deviations are 6.8 in both samples). Panels

B and C show that our main measures of creativity of innovations are highly correlated, except

for the generality index, which is negatively correlated with our tail innovation index and weakly

correlated with the others.

4 Empirical Results

In our theory manager age is partly an indicator of a corporate culture that is open to disruption

(because high-type firms that have a comparative advantage in radical innovation select younger
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managers), but also has a causal effect on radical innovations (since a young manager has a com-

parative advantage in radical/creative innovations). Motivated by these theoretical results, we

start with the cross-sectional relationship between firm-level measures of radical innovations and

manager age.19 We then turn to a more direct investigation of the effect of manager age on radi-

cal innovations, focusing on “within-firm”variation. Finally, exploiting the timing of the increase

in radical innovations following a change in manager age, we provide estimates of the structural

parameters of the model.

4.1 Cross-Sectional Results

Our cross-sectional results are presented in Tables 2, 3, and B6 and in Figure 1. Our estimating

equation is

yf = αmf +X′fβ + δi(f) + νt + εf , (13)

where yf is one of our measures of radical innovations introduced in the previous section (innovation

quality, superstar fraction, tail innovation, or generality) for firm f , and mf is our firm-level

measure of comparative advantage in radical innovation or openness to disruption– the average

age of company CEOs over our sample window. In addition, Xf is a vector of controls, in this

case, firm age, log of employment, log of sales, and log of total number of patents during our time

window. Controlling for firm age is particularly important in order to distinguish the correlation

of creativity of innovations with manager age from its correlation with firm age. In addition, δi(f)

denotes a full set of four-digit main SIC dummies, so that the comparisons are always across firms

within a fairly narrow industry,20 and νt denotes a full set of year dummies. Finally, εf is the error

term. To start with, we do not include firm fixed effects, and for this reason we use average age of

CEOs in the specifications and focus on the cross-sectional correlation rather than the year-to-year

variation in CEO age and our outcome measures.21 We turn to specifications with fixed effects in

Table 4.

Unless otherwise indicated, all of our regressions have one observation per firm×year, and are
weighted with the total patent count of the firm in that year, so that they put less weight on

observations for which our measures of radical innovations are computed from only a few patents.

All standard errors are clustered at the firm level and are robust against heteroscedasticity.

Different columns of Table 2 correspond to our four different measures of radical innovations.

Column 1 shows an economically sizable correlation between CEO age and our measure of innova-

19Another caveat is that our theoretical results relate manager age at the product-line level to the innovation
strategy and creativity of innovations, while the bulk of our empirical analysis in this section will be at the firm level
focusing on the age of a firm’s CEO (or top managers).
20All firms in our baseline sample are in one of 283 four-digit SIC industries.
21Panel A of Table 4 shows very similar, but more precisely estimated, results when the CEO age variable is

time-varying (without fixed effects).
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tion quality (average number of citations per patent). The coeffi cient estimate, −0.168 (standard

error = 0.075), is statistically significant at less than 5% and indicates that companies with a

younger CEO have greater innovation quality. We interpret this pattern as evidence that compa-

nies that are more open to disruption (and willing to hire younger managers) tend to be the ones

producing more radical innovations. The quantitative magnitudes are sizable but plausible. For

example, a one-year decrease in CEO age is associated with a 0.168 increase in average citations,

which is approximately 1.1% of the firm-level weighted mean of our innovation quality variable

(15.9).

The estimated effects of the covariates are also interesting. Firm age is negatively associated

with innovation quality, suggesting that younger firms are more creative (though this pattern is not

as robust as the impact of CEO age in other specifications). In addition, our measures of radical

innovations are uncorrelated with employment and sales, and are only weakly correlated with the

number of patents held by the firm (except for tail innovations). This confirms that our measures

of creativity of innovations are quite distinct from the total number of patents.22

Column 2 shows a similar relationship with the superstar fraction (−0.319, standard error =

0.133). This result suggests that younger CEOs tend to work with higher-quality innovators (a

relationship we directly investigate in Table 9 below). Columns 3 and 4 show even more precisely

estimated relationships with our measures of tail innovations and generality. The implied quan-

titative magnitudes are also a little larger– a one-year increase in CEO age is associated with,

respectively, 3.2% and 4.6% increases relative to weighted sample means in these two measures.

The patterns in the data underlying the results in Table 2 are depicted in Figure 1, which

plots the correlation between our four measures of the creativity of innovations and CEO age. To

transparently illustrate these relationships, for each of our measures, we create deviations from

the industry×year means (and group all observations with CEO age ≤ 40 or CEO age ≥ 60).

The negative relationship between CEO age and our four measures is evident. Moreover, these

empirical relationships are well approximated by linear regressions (the fitted lines correspond to

a linear regression using these industry×year deviations from means on CEO age bins without any

other covariates). We show the same relationships when controlling for the same covariates as in

Table 2 in Figure B1 in Appendix B.

Tables 3 and B6 probe the robustness of our baseline cross-sectional results in different direc-

tions, and demonstrate that under most reasonable variations, the relationship between manager

age and the creativity of innovations is, if anything, even stronger than in Table 2.

Table 3 looks at several different specifications. Perhaps most importantly, Panel A shows

that the results are similar, even if a little smaller, when the regression is unweighted. Panel B

22 In Table B1 in Appendix B we show the same specification as in column 1, but the covariates included one at
the time. The results are very stable across columns, which is reassuring.
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estimates our baseline specification using a median regression, which is less sensitive to outliers.

The results are again very similar, and in fact typically more precisely estimated, confirming that

our baseline results are not driven by outliers. Panel C, which is the regression analogue of Figure

1, shows a very similar relationship when we include only the four-digit SIC dummies and year

effects. Panels D and E replace the four-digit SIC dummies in our baseline specification with

two-digit and three-digit SIC dummies (192 and 59 dummies, respectively). Panel F goes in the

opposite direction and enriches the set of controls; in addition to the baseline covariates in Table 2,

it includes several other firm-level controls: profitability (income to sales ratio), debt to sales ratio,

and log physical capital of the firm. The results are virtually the same as those in Table 2, but

a little more precisely estimated. Panel G, additionally, adds R&D intensity (R&D to sales ratio)

to the previous specification.23 This is intended to verify that our results cannot be explained by

some firms performing more R&D than others (here the sample declines to 5, 907 observations).

The estimates are once again very close to those in our baseline regressions in Table 2, and the

R&D intensity variable itself is not significant in any of the columns.

Our baseline regressions are only for firm×year observations with positive patents (since our
measures cannot be computed when the denominator is zero). Panel H verifies that this potential

endogenous selection into our sample is not responsible for our results. It includes all available

firm×year observations, imputing a value of zero to all of our measures when a firm does not have

any patents in that year. The estimated relationship between CEO age and our measures of the

creativity of innovations are remarkably similar to the baseline results in this case (with only the

tail innovation index experiencing a sizable decline in coeffi cient, which still remains statistically

significant at 5%).

Finally, Panel I takes a simple approach to deal with the issue of self-citations (whereby a firm

cites its own patents) and includes the fraction of self-citations of the patents of the firm as an

additional control variable in our baseline specification. This has little effect on the relationship

between CEO age and the creativity of innovations, though this self-citation measure itself is

significantly positive, suggesting that firms that give more citations to their own patents tend to

be more creative according to all four of our measures.

In addition, Table B2 in Appendix B shows that the results are very similar in a much smaller

balanced sample of 279 firms with no missing values for any of our main variables between 1995

and 2000, and also when we use the average age of the top management team rather than CEO

age. (We prefer CEO age as our baseline measure because across companies there is considerable

variation in the number of managers for which age data are available, making this measure po-

tentially less comparable across firms). It demonstrates as well that the results are very similar

23To deal with outliers in R&D expenditures, we winsorize this variable at its 99th percentile value.
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in high-tech and low-tech subsamples (where high-tech firms are those in SIC 35 and 36, which

include industrial and commercial machinery and equipment and computer equipment; and elec-

tronic and other electrical equipment and components, and low-tech firms are the rest), and in a

non-pharmaceutical subsample. These subsamples are further studied in Table 5. Table B3 in the

Appendix demonstrates that our results are very similar when we control for patents during the

last three years rather than the entire stock of patents. Table B4 confirms that the results are

also similar when we explicitly recognize the selection into having any patents using a two-step

Heckman correction, while Table B5 verifies that these relationships are not driven by firms that

have recently undertaken an initial public offering (IPO) by removing firms that have had an IPO

over the last 10 years from the sample.

Table B6 in the Appendix shows the weighted and the unweighted relationship between CEO age

and several alternative measures of radical innovations. These are: a measure of innovation quality

using average citations per patent computed using only five years of citations data, a measure

of superstar inventors using information on the most highly cited patent of the inventor, the tail

innovation index with p = 0.90, the alternative tail innovation index we introduced above, which

includes the fraction of patents with cites above the median in the denominator, and the originality

index. We also look at employment growth, sales growth and the R&D intensity of the firm in that

year to both investigate whether the more radical innovations translate into faster growth and to

check whether CEO age impacts firm outcomes beyond patents. The results using the alternative

measures of the creativity of innovations are similar to those in Table 2, except that there are a few

cases where the relationship is no longer significant in the unweighted specifications. We further

find negative effects of CEO age on employment and sales growth in the unweighted regressions,

but not in weighted regression, perhaps reflecting the fact that the effects of younger CEOs can

be more easily detected on smaller firms. Consistent with our earlier emphasis, we do not find any

relationship between CEO age and R&D intensity. In Panels E and F, we show that CEO age

also predicts first and second renewals of patents, which are alternative measures of the value and

thus creativity of a patent. Also supportive is the fact that CEO age does not predict “internal

innovations” (coded from patents that have more than half of their citations to the firm’s other

patents). Lastly, Table B7 in the Appendix shows a similar relationship between average CEO age

in industry and industry-level measures of radical innovations.

Overall, these results suggest that there is a robust and strong statistical relationship between

the age of the CEO and each one of our four measures of radical innovations.
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4.2 Panel Results with Firm Fixed Effects

We now show that a strong and fairly robust association between CEO age and radical innovations

is present when we focus on within-firm variation in the age of the CEO. We further document that

consistent with our theory, radical innovations start increasing before there is a decline in CEO

age.

Panel A in Table 4 allows CEO age to vary across years, but still without fixed effects. Thus

relative to Table 2, the only difference here is that we are exploiting both the between-firm and

over-time variation. As a result, there is now a stronger negative relationship between CEO age

and our measures of creativity of innovations than in Table 2.

Panel B turns to our main specification, which includes firm fixed effects as well as year effects

(and, of course, in this case, SIC industry dummies and firm age are dropped). This means that we

are now focusing on within-firm variation and the CEO age variable is being identified from changes

in CEOs– that is, from whether a firm that switches to a younger CEO tends to have more radical

innovations relative to its mean.24 In addition to throwing away all of the between-firm variation,

another challenge to finding meaningful results in this specification is that patent applications

in one year are often the result of research and product selection from several previous years.25

These concerns notwithstanding, all of the coeffi cient estimates on CEO age in these within-firm

regressions, except for generality, are negative and statistically significant. For innovation quality,

the magnitude of the estimate is about 12% larger than the specification without fixed effects

in Table 2 (e.g., −0.188 vs. −0.168), whereas for superstar fraction and tail innovations, it is

smaller– about 47% to 62% of the magnitude in Table 2.

The current CEO influences the contemporaneous innovation strategy, and in our model, this has

an immediate impact on radical innovations. In practice, some of the impact is likely to be delayed,

since research projects, and even patenting, can take several years. We may therefore expect the

impact of the CEO’s human capital, decisions and age to influence the creativity of innovations

over time. We investigate this issue in Panel C by including current CEO age and lagged CEO

age simultaneously. Our results show that, with all of our measures of radical innovations (except

generality), both matter with quantitatively similar magnitudes.

A related question concerns separating the impact of the current CEO from the persistent

effects of past innovations– for example, past creativity may spill over into current creativity in

part because patents from a research project may arrive in the course of several years. We investigate

this issue by including the lagged dependent variable on the right-hand side. Though such a model,

24This specification is related to Bertrand and Schoar’s famous (2003) paper on the effect of managers on corporate
policies, though in contrast to our focus on CEOs, their sample includes chief financial and operating offi cers as well
as lower-level executives.
25Recall, however, that patents are classified according to their year of application, so we are investigating the

impact of CEO age not on patents granted but on patents applied for when the CEO is in charge.
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with fixed effects and lagged dependent variable, is not consistently estimated by the standard

within estimator when the coeffi cient on the lagged dependent variable is close to 1, the results in

Panel D show that its coeffi cient is very far from 1 and the estimates are fairly similar to those in

Panel A.26

Finally, in Panel E we turn to a central longitudinal implications of our model– that creativity

of innovations should increase, on average, before the firm switches to a younger manager. The

most direct way of investigating this prediction is by including the lead of CEO age together with

current CEO age (similar to the specification in Panel C, except that lead CEO age replaces lagged

CEO age). The specifications reported in Panel E show statistically significant negative effects

of both current and lead CEO age on the creativity of innovations (except with the generality

measure). Interestingly, and perhaps somewhat surprisingly, the magnitudes of the lead and the

contemporaneous effects are quite similar. The significant effect of lead CEO age is prima facie

evidence of the importance of sorting of younger CEOs to firms that have a comparative advantage

in radical innovation (for example because they are more open to disruption), an issue we investigate

in greater detail in the next subsection.

Table 5 investigates the robustness of within-firm relationships reported in Table 4, focusing on

the specifications reported in Panels B and E, and on our first three measures, innovation quality,

superstar fraction and tail innovation (since there is no robust relationship with generality once

firm fixed effects are included). Panel A documents a very similar relationship when the regression

is unweighted. Panel B shows that the results with firm fixed effects are also robust to imputing a

value of zero to our measures of radical innovations when the firm does not have any patents in that

year (as in Panel H of Table 3). Panels C and D show that the same relationships are present in

both our high-tech and low-tech subsamples, with if anything a stronger relationship in the low-tech

subsample. Finally, Panel E shows that the results are robust to including the self-citation fraction

on the right-hand side as in Panel I of Table 3.27

Overall, the results in this subsection demonstrate that firms that switch to younger CEOs

generate more radical innovations both after and shortly before such a switch. Though this pattern

26 If we estimate these models using Arellano and Bond’s (1991) GMM estimators, the results are similar with
innovation quality and superstar fraction, but weaker with the tail innovation index, partly because we lose about a
quarter of our sample with these GMM models.
27Table B8 shows that our results with firm fixed effects are similar when we include the additional controls from

Panel F of Table 3, when we include R&D intensity, and in the non-pharmaceutical sample. We also report a median
regression with similar results, though in this case, since the median regression is nonlinear and would not consistently
remove the fixed effects, we first de-mean the data. We do not report a specification with average manager age, since
the year-to-year variation in this variable is largely driven by the number of managers for whom ages reported.
Finally, Table B9 shows the within-firm equivalent of Table B6, where the relationship between CEO age and the

alternative measures of radical innovations continues to be robust. However, the relationship with employment and
sales growth is weaker and not statistically significant, which is unsurprising since the impact of a CEO on sales and
employment growth is likely realized over time and reflects not just his or her influence on creative innovations but
a whole range of other factors.
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is indicative of the simultaneous presence of sorting and causal effects of CEO age on radical

innovations, as explained previously it does not directly translate into causal estimates. We next

turn to an indirect inference procedure exploiting the structure of our model to obtain such causal

estimates.

4.3 The Causal Effect of Manager Age on Radical Innovations

In this subsection, we perform an indirect inference exercise in order to shed further light on

the causal effect of manager age on radical innovations. We choose the parameters of the model

presented in Section 2 so that the model quantitatively matches the reduced-form estimates– in

particular, the coeffi cients of lead and current CEO age for innovation quality. We then use these

implied parameters to compute the implied causal effect of manager age on radical innovations.

We perform this exercise both by matching moments from the data and our estimates from the

weighted regressions (namely, from Panels B and E in Table 4) and from the unweighted regressions

(from Panel A in Table 5).

The (average) impact of a younger manager on the creativity of innovations for a given firm

type is 1
F (a∗)

∫ a∗
0 ΛθH q̄

adF (a) = ΛθHδ
g+δ

[
1−e−(g+δ)a∗

]
[1−e−δa∗ ]

. Because of the sorting of younger managers to

high-type firms, we cannot directly obtain this quantity from our reduced-form empirical exercise.

Rather, we need to obtain estimates of the parameters ψ and ΛθH (the parameters Λ and θH

do not matter separately, and thus in what follows, we will treat ΛθH as a single parameter).

The reduced-form coeffi cient estimates are functions of these parameters, but they also depend on

the transitions between high-type and low-type firms, the distribution of incremental innovations

per product relative to the threshold for radical innovation, n∗, and the stationary distributions

theoretically characterized in Appendix A.

Though structurally estimating all of the underlying parameters of our model would require

more information on firm transitions and stationary distributions, we can obtain estimates of the

structural parameters that are relevant for the causal effect of CEO age on radical innovations more

straightforwardly. For this exercise, we set the discount rate to ρ = 0.02, and normalize the profit

flow to π = 1 (which is without loss of any generality). We fit an exponential distribution to the

age distribution of managers in our sample to obtain an estimate of δ in the model. We take the

entry rate to be x = 5% which corresponds to the entry rate in our Compustat sample. Finally, we

take the parameter α, which determines how rapidly the productivity of incremental innovations

declines from Akcigit and Kerr (2018), who estimate a similar parameter from the patent citation

distribution.

This leaves the following parameter vector Ψ ≡ {ψ,ϕ,ΛθH , ξ, η, ζ} to be determined. Once these
parameter values have also been fixed, optimal innovation decisions and equilibrium stationary
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distributions can be computed using the expressions provided in Section 2 and Appendix A).

We can then generate simulated firm histories from which the equivalents of the reduced-form

regression coeffi cients in Table 4 can be computed. Of particular importance for this exercise are

the specifications in Panels B and E of Table 4, where various measures of radical innovations

were regressed on current CEO age (and lead CEO age in Panel E), firm fixed effects and controls.

Throughout we focus on the innovation quality measure (column 1).

Let us denote the coeffi cient estimate on current CEO age in column 1, Panel B of Table 4

by γcurrent, and the coeffi cient estimates on current and lead CEO age in column 1, Panel E,

respectively, by γ′current and γ
′
lead. In our indirect inference procedure, we will target these three

parameters. Specifically, we generate data from the model given a parameter vector Ψ, and convert

the measure of successful radical innovation in the model, which is a 0-1 variable, into the same

units as our innovation quality variable (by dividing it by its variance and multiplying it with the

variance of innovation quality). We then run the same regressions as in Panels B and E of Table

4, and compare the estimates to the empirical estimates of γcurrent, γ
′
current and γ

′
lead.

In addition to these three regression coeffi cients, our indirect inference procedure targets three

central moments in the data: the average annual growth rate of (real) sales per worker, within-firm

coeffi cient of variation of radical innovations, and the fraction of incremental innovations, measured

as fraction of internal patents (which mainly build on innovating firms’existing lines as opposed to

innovating on product lines operated by other firms).28 This implies that we have in total six data

moments and six parameters.

We make two additional assumptions in matching the model to data. First, in the model

managers are employed at the product line level, whereas in the data we only observe CEO at the

level of the company (which comprises several product lines). We ignore this distinction, and treat

the data as if it were generated from one product firms. Second, in the model, the identity of the

manager is indeterminate as there are no costs of changing managers, so a firm could change its

manager every instant or at some regular interval even without changing its innovation strategy.

To make the model more comparable to data, we assume that a firm keeps its manager until it

needs to switch from an older to a younger manager in order to change its innovation strategy.

Table 6 provides the values of the parameters we have selected on the basis of external data

as well as the values of the parameters in the vector Ψ, which are chosen to match the six afore-

mentioned moments. The first column of Table 6 displays the parameter values obtained in the

first estimation where we target the coeffi cient estimates from the weighted regressions, whereas

the second column displays those obtained in the second estimation where we target the coeffi -

cient estimates from the unweighted regressions instead. Table 7 shows the match between the

28Following Akcigit and Kerr (2018), we define internal patents as those whose majority of citations are self cites.
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values of these moments in the data and those implied by the model for the two specifications.

Panel A in Table 7 reports estimates using weighted regression targets, while Panel B is for the

case with unweighted regression targets. In both cases, the model-implied numbers are very close

to the targeted empirical moments, and in particular, the model’s predictions are consistent with

reduced-form regression results, including the significant and sizable coeffi cient on lead CEO age,

which is generated by the fact that ψ > 0 and is a non-trivial source of radical innovations.

The implied pattern is also visible in Figures 2 and 3, which plot the probability of a radical

innovation and the average CEO age as a function of time since switching to high-type for the

estimates in Panel A. These figures show that firms slowly reduce the average age of their managers

after switching to high-type (since if at first they are below n∗, they do not need to change their

CEO). Correspondingly, they also slowly increase their probability of radical innovations. Because

much of this increase in the probability of radical innovations takes place before high-type firms

switch to a younger manager, in the reduced-form regressions, it will be captured by lead CEO age.

It is also useful to gauge whether, at these estimated parameter values, the model performs

well on some other dimensions. One empirical moment we have not used for estimation is the

probability of firms switching to younger managers. Using the first set of estimated parameter

values, 20% of all firms attempt a radical innovation (these are the high-type firms with n ≥ n∗).

Consequently, “young”managers (defined as those with a < a∗ in Proposition 1) also make up

20% of the population of managers, implying that a∗ corresponds to age 50 in our sample of

managers/CEOs. Using this information, we can then compare the annual probability of a firm

switching from an old manager (with a > a∗) to a young manager (with a ≤ a∗) in the data and

in the model. Reassuringly, these two numbers are fairly close to each other, 4.10% and 2.75% for

the case of weighted estimates and 4.10% and 3.15% with the unweighted estimates.

Using the parameter estimates from these exercises, we next compute the “causal effect” of

manager age on radical innovations. We start with the equilibrium stationary distribution and then

replace them with old managers (in practice, we simply reverse the allocation of managers to firms

by age). We assume that after this reshuffl ing, each firm will pursue the same innovation strategy

as before.29 We then calculate the change in radical innovations in this hypothetical economy

compared to the baseline economy. This exercise yields a 1% decline in the average number of

radical innovations with the weighted estimates and 7% with the unweighted estimates. Taken

together, these results imply that although the causal effect of manager age on radical innovations

29 It is possible that some firms would switch their innovation strategy because they end up with much older or
much younger managers. However, whether this is the case or not would also depend on managerial wages after
reshuffl ing, which in turn depends on a variety of auxiliary assumptions on wage determination under “mismatch”.
Our strategy avoids this complication by estimating a lower bound on this effect, though this lower bound is likely
to be fairly tight since low-type firms cannot change their innovation strategy and most high-type firms would be
unlikely to alter their innovation strategy either unless there is a very large change in the age of the manager assigned
to them.
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is positive, it cannot account for the bulk of the variation in radical innovations (which are, instead,

mostly driven by firm type according to our estimates).30

Overall, our indirect inference exercise establishes that the model can generate the patterns we

see in the data, but implies that much of the reduced-form relationship between manager age and

radical innovations is due to sorting. Nonetheless, there is a non-negligible causal effect of younger

managers on radical innovations as well.

4.4 Inventor Age and Creativity of Innovations

We next turn to an investigation of the role of inventors in radical innovations, focusing again on

age. For this purpose, we use patent-level regressions and estimate whether there is an empirical

association between inventor age and our various measures of creativity of innovations. Though in

our theoretical model there is no distinction between managers and inventors, this distinction is

important in practice. One might then expect the role of product-line managers in our model to

be played partly by the top management of the firm and partly by inventors (or the lead inventor)

working on a particular R&D project. CEOs, then, not only decide which projects the company

should focus on but also choose the research team. In this subsection, we bring in information on

the age of inventors in order to investigate the simultaneous effects of inventor and CEO age on

the creativity of innovations.

We use Lai et. al.’s (2009) unique inventor identifiers described above to create a proxy for this

variable. Our proxy is the number of years since the first innovation of the inventor, which we will

refer to as “inventor age.”

Our main regression in this subsection will be at the patent level and take the form

yift = φIift + αmft +X′iftβ + δf + γi + dt + εift. (14)

Here yift is one of our measures of the creativity of innovation for (patent) i granted to firm f

at time t. Our key right-hand-side variable is Iift, the age of the inventors named in patent i (in

practice, there is often more than one such inventor listed for a patent). In addition, mft is defined

as CEO age at time t and will be included in some regressions, Xift is a vector of possible controls,

and δf denotes a full set of firm fixed effects, so that our specifications here exploit differences in

the creativity of innovations of a single firm as a function of the characteristics of the innovators

involved in the relevant patent. In our core specifications, we also control for a set of dummies,

denoted by γi, related to inventor characteristics as we describe below. All specifications further

30We also note that, even though the causal effect of young managers is small, this is still suffi cient in our model
to support an allocation in which, as in the data, younger managers are allocated to high-type firms pursuing radical
innovations.
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control for a full set of year effects, denoted by dt, and εift is the error term.31

The results from the estimation of (14) are reported in Table 8. In Panel A we focus on a

specification similar to the regressions with firm fixed effects reported in Table 4. This is useful

for showing that this different frame still replicates the results showing the impact of CEO age

on creativity of innovations. In particular, Panel A focuses on Compustat firms for the period

1992 − 2004 and includes the same set of controls as in Table 4 Panel A (firm fixed effects, year

fixed effects, log employment, log sales and log patents of the firm); it does not contain any variables

related to inventor characteristics. As in the rest of this table, these regressions are not weighted

(since they are at the patent level), and the standard errors are robust and clustered at the firm

level.

Our results using this specification are similar to those of Panel A of Table 4, though a little

smaller. In column 1, for instance, we see an estimate of −0.119 (standard error = 0.038) compared

to −0.188 in Table 4. As a natural patent-level analogue of our tail innovation index, we look at a

dummy for the patent in question being above the pth percentile of the citation distribution, and

report results using this measure for two values, p = 0.99 and p = 0.90, in columns 2 and 3. Both

of these measures are strongly negatively correlated with CEO age.32

Panel B goes in the other direction and reports the estimates of a model that controls for

inventor characteristics and looks at the impact of inventor age, without controlling for CEO age,

for the same sample as in Panel A (thus restricting it to firms with information on CEO age). As

with all of the other models reported in this table, in Panel B we control for a full set of dummies

for the (count of) maximum number of patents over our sample period of any of the inventors on

this patent;33 a full set of dummies for the size of the inventor team (i.e., how many inventors are

listed); and a full set of dummies for the three-digit IPC class.34 The inclusion of this rich set of

dummy variables enables us to compare inventors of similar productivity. It thus approximates

a model that includes a full set of inventor dummies.35 The results show that there is a strong

relationship between inventor age and the creativity of innovations. For example, in column 1, the

coeffi cient estimate on inventor age is −0.234 (standard error = 0.026), about twice as large as the

31A single patent can appear multiple times in our sample if it belongs to multiple firms, but this is very rare and
applies to less than 0.2% of the patents in our sample.
32Our measure of superstar fraction is no longer meaningful at the patent level. For completeness, we also show

results with the generality index, even though the results in Table 4 already indicated that, with firm fixed effects
included, there is no longer a significant relationship between CEO age and the generality index, and this lack of
relationship persists for all of the estimates we report in Table 8.
33 In other words, we include a dummy variable for the assignee/inventor of this patent with the highest number

of total patents having k = 1, 2, ..., 89+ patents (where 89+ corresponds to 89 or more patents for the inventor with
the maximum number of patents).
34This corresponds to 374 separate technology classes and is roughly at the same level of disaggregation as the SIC

dummies we used in the firm-level analysis in Tables 2− 3.
35We cannot include a full set of inventor fixed effects directly because inventor age would not be identified in the

presence of the full set of year dummies
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CEO age estimate in Panel A.

When we do not control for CEO age, the sample can be extended beyond 1992 − 2004. This

is done in Panel C, which expands the sample in two different ways, first by including Compustat

firms without CEO information, and second by broadening the time period covered to 1985−2004.

The results are very similar to those in Panel B, indicating that the focus on Compustat firms with

CEO age information is not responsible for the broad patterns we are documenting.

Panel D extends the sample further to non-Compustat firms, which can also be included in our

analysis since we are not using information on CEO age. This increases our sample sixfold (since

most patents are held by non-Compustat firms). However, in this case, we can no longer include

the employment and sales controls. Despite the addition of almost 1.5 million additional patents

and the lack of our employment and sales controls, the results in this panel are again very similar

to those in previous panels, and suggest that, at least in this instance, our results are not driven

by our focus on the Compustat sample.

Panel E provides our main results in this subsection. It returns to the Compustat sample over

the period 1992-2004 and adds back the CEO age variable; otherwise, the specification is identical

to that in Panel B. The results show precisely estimated impacts of both CEO age and inventor

age. For example, in column 1 with our innovation quality variable, the coeffi cient on CEO age

is −0.119 (standard error = 0.036) and that on inventor age is −0.233 (standard error = 0.026);

these are very close to the estimates in Panels A and B, respectively. The pattern is similar in the

other columns (except again for generality).

These results provide further evidence that the relationship between manager/CEO age and the

creativity of innovations in the data reflects an important dimension of sorting. In particular, firms

appear to make several associated changes– in top management and innovation teams– around the

same time they change their portfolio of innovation and their innovation strategy (and perhaps their

“corporate culture”). Reflecting this sorting, the estimated magnitudes linking CEO age to our

indices of radical innovations are smaller in Table 8 than those in our baseline firm-level regressions.

Our next results, reported in Table 9, provide some direct evidence on this by looking at the

relationship between inventor age and CEO age. We estimate a regression similar to equation (14)

except that now the dependent variable is the average age of the inventors on the patents granted

for that firm in year t and the key right-hand-side variable is the age of the CEO, and we again

control for firm fixed effects. The first column of Table 9 reports a regression of the average age of

inventors on firm and year fixed effects, log employment, log sales, log patents, and CEO age, while

the second column also adds dummies for inventor team size and three-digit IPC class as in the

specifications in Table 8. The results, which show a positive (even if only marginally significant)

relationship, suggest that younger CEOs tend to hire younger inventors, indirectly corroborating the
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sorting effect emphasized in our theoretical model.36 Further evidence consistent with this pattern

is provided in Tables B10 and B11 in Appendix B, where we create time-varying measures of the

innovation quality of new and existing inventors of the firm (based on the citations of their patents

in the past). We then show that both using our innovation quality measure and the tail innovation

index, a younger CEO is associated both with an increase in the creativity of the innovation of

continuing inventors and an even larger increase in the quality of new inventors.

4.5 Stock of Knowledge, Opportunity Cost and Creativity of Innovations

Finally, Table 10 turns to an investigation of the additional implications of our approach highlighted

in Proposition 2. We noted there that we may expect openness to disruption to be more important

for companies that are technologically more advanced (as measured by the number of patents), but

also that companies that have more to lose (because of the greater opportunity cost of disruption

in terms of other profitable activities) may shy away from disruptive radical innovations. We

investigate this issue by including the interaction between CEO age and log total patent count (as

a proxy for how advanced the technology of the company is) and also the interaction between CEO

age and log sales (as a proxy for company revenues that may be risked by disruptive innovations) in

equation (13). According to the theoretical ideas suggested above, we expect the interaction with

log total patent count to be negative, and that with sales to be positive (indicating that average

manager age matters more for the creativity of innovations for companies with a significant number

of patents and less for companies with high sales).

This is a demanding, as well as crude, test, since neither proxy is perfect, and moreover, log

sales and log patent counts are positively correlated (the weighted correlation between the two

variables is 0.7 in our sample), thus stacking the cards against finding an informative set of results.

Nevertheless, Table 10, which uses the same firm sample with annual observations as in Table

4 Panel A, provides some evidence that our theoretical expectations are borne out. In all of

our specifications, the interaction between CEO age and log total patent count is negative and the

interaction with log sales is positive. Moreover, these interactions are statistically significant except

for the log patent interaction for the innovation quality measure.37 These results thus provide some

support for the hypothesis that the stock of knowledge of the company and opportunity cost effects

are present and might in fact be quite important (at least quantitatively at this correlational level).

36 Interestingly, this result disappears when we do not control for firm fixed effects.
37As noted above, the main effects are evaluated at the sample mean and are typically close to the estimates

reported in Table 2.
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5 Conclusion

Despite a large and flourishing literature on innovation, there is relatively little work on the de-

terminants of the creativity of innovative activity, and in particular, on innovations and patents

that contribute most to knowledge. In this paper, we undertook a first investigation of the role of

firms, managers and innovators in radical (more creative) innovations. We provided a simple model

drawing a clear distinction between radical innovations and incremental innovations, whereby the

former combines ideas from several different lines of research and creates more significant advances

(and contributions to knowledge). We showed that, because of their comparative advantage in

radical innovation, younger managers tend to be employed in firms attempting radical innovations

and also contribute to the creativity of innovations.

The bulk of our paper provides empirical evidence consistent with the radical innovation con-

tributions of certain types of firms (for example, those that are more open to disruptions and

interested in new technological paradigms), which are more willing to hire younger managers. We

do this using several measures of radical innovations, including our proxy for innovation quality,

which is the average number of citations per patent; two indices for creativity of innovations, which

are the fraction of superstar innovators and the likelihood of a very high number of citations (in

particular, fraction of the patents of a firm that are above the 99th percentile in terms of citations);

and the generality index. Based on our theory, we use the age of the CEO of the company as

a proxy for openness to disruption or other factors creating a comparative advantage in radical

innovations.

We find fairly consistent and robust cross-sectional and within-firm correlations between open-

ness to disruption, proxied by CEO age, and radical innovations. They do not, however, correspond

to the causal effect of CEO age on radical innovations because, as highlighted by our theoretical

model, younger managers tend to be employed by firms that are “high-type”– for example, more

open to disruption and more creative. A simple indirect inference exercise using the structure of our

model suggests that most of the empirical relationship between CEO age and radical innovations

is due to these sorting effects, and the causal impact of CEO age is positive but small.

Our paper highlights the need for future work investigating the effects of different types of

firm organizations and other attributes of managers and innovators. A particularly fruitful direc-

tion would be to systematically investigate what types of firms and firm organizations encourage

creativity and lead to more radical innovations. This would involve both theoretical and empiri-

cal analyses of the internal organization of firms and their research strategies and a study of the

interplay between institutional and society-level factors and the internal organization of firms.
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Appendix A: Omitted Proofs from Section 2

A1 The Derivation of Equations (7), (8) and (9)

A firm makes the innovation decision in each of its product lines to maximize its present discounted
value, which we denote by Ws (−→qf ,−→nf ) where s ∈ {H,L}, −→qf is the vector of productivities of the
firm, −→nf is the vector of the number of incremental innovations in each of these product lines, and
mf denotes the number of product lines that firm f is operating. The value function for a low-type
firm can be written as

rWL (−→qf ,−→nf )−
·
WL (−→qf ,−→nf ) =

mf∑
m=1


maxa {πqf,jm + q̄tf (a)− wa,t}

+ξ

 WL

( −→qf\ {qf,jm} ∪ {qf,jm + ηnf,jm+1

}
,

−→nf\ {nf,jm} ∪ {nf,jm + 1}

)
−WL (−→qf ,−→nf )


+τ [WL (−→qf\ {qf,jm} ,−→nf\ {nf,jm})−WL (−→qf ,−→nf )]

 (A1)

+ϕ [WH (−→qf ,−→nf )−WL (−→qf ,−→nf )] .

The right-hand side of this value function can be explained as follows: for each product line
m = 1, ...,mf , the firm receives a revenue stream of πqf,jm as a function of its productivity in this
product line, qf,jm . In addition, it has a choice of the age of the manager it will hire to operate
this product line (formally choosing a ∈ R+ ∪ {∅}, which is suppressed to save on notation), and if
the manager’s age is a, it will have additional revenue/cost savings of q̄tf (a) and pay the market
price for such a manager of age a at time t, wa,t. Summing over all of its product lines gives
the current revenues of the firm. In addition, the firm can undertake an innovation on the basis
of the technology of each of its active product lines. Since we are looking at a low-type firm, all
innovations will be incremental, thus arriving at the rate ξ. When such an innovation happens in
product line m that has already undergone nf,jm incremental innovations, the mth element of −→qf
changes from qf,jm to qf,jm + ηnf,jm+1 and n goes up by one. We represent this with the arguments

of the value function changing to −→qf \ {qf,jm} ∪
{
qf,jm + ηnf,jm+1

}
, −→nf\ {nf,jm} ∪ {nf,jm + 1} (and

the firm relinquishes its current value function WL (−→qf ,−→nf )). The firm might also lose one of its
currently active product lines to radical destruction, which happens at the endogenous rate τ , and
in that case, the firm’s value function changes from WL (−→qf ,−→nf ) to WL (−→qf \ {qf,jm} ,−→nf\ {nf,jm})
(i.e., −→qf changes −→qf \ {qf,jm} and −→nf to −→nf\ {nf,jm}). Finally, the last term is due to the fact that
a low-type firm switches to high-type at the flow rate ϕ, in which case it relinquishes its current
value function and begets the value function of a high-type firm, WH (−→qf ,−→nf ).

The value function of a high-type firm can be similarly written as

rWH (−→qf ,−→nf )−
·
WH (−→qf ,−→nf ) (A2)

=

mf∑
m=1

max


πqf,jm + maxa

q̄tf (a)− wa,t + ξ

 WH

( −→qf\ {qf,jm} ∪ {qf,jm + ηnf,jm+1

}
,

−→nf\ {nf,jm} ∪ {nf,jm + 1}

)
−WH (−→qf ,−→nf )


 ;

πqf,jm + maxa

{
q̄tf (a) + ΛθH q̄

a

[
EWH (−→q f ∪ {qj′ + η0} ,−→n f ∪ {0})

−WH (−→q f ,−→n f )

]
− wa,t

}


+

mf∑
m=1

τ [WH (−→qf\ {qf,jm} ,−→nf\ {nf,jm})−WH (−→qf ,−→nf )]

+

mf∑
m=1

ψΛθH

[
EWH

( −→q f ∪ {qj′ + η0} ,−→n f ∪ {0}

)
−WH (−→q f ,−→n f )

]
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The intuition for this value function is very similar to (A1) except for the possibility of a radical
innovation. In particular, for each product linem, this high-type firm has a radical innovation at the
flow rate ψΛθH regardless of its innovation strategy. In addition it has a choice between incremental
and radical innovation, represented by the outer maximization. The first option here is choosing
incremental innovation for product line m and is thus similar to the first line of (A1). The second
option is radical innovation, and in this case the trade-off involved in the age of the manager is
different, since manager age affects the arrival rate of radical innovations as shown in (6). In the case
of a successful radical innovation, the value of the firm changes to EWH

(−→qf ∪ {qj′ + η0

}
,−→nf ∪ {0}

)
,

where the expectation is over a product line drawn uniformly at random upon which the radical
innovation will build.

Given (A1) and (A2), the value functions (7), (8) and (9) follow straightforwardly by conjec-
turing their forms and and verifying this conjecture.�

Proof of Propositions 1 and 2

We present the proof of Proposition 1 and 2. The characterization of the rest of the general
equilibrium is relegated to Appendix B.

Proof of Proposition 1

First, substitute the equilibrium wage (10) into (8) to obtain a simplified value function for low-type
firms as

rVL (qj , n)− V̇L (qj , n) = πqj + ξ
[
VL
(
qj + q̄tηα

n+1, n+ 1
)
− VL (qj , n)

]
−τVL (qj , n) + ϕ [VH (qj , n)− VL (qj , n)] .

We next characterize the solution for this value function.

Lemma 1 Suppose that the value function for a high-type firm takes the following form:
VH (qj , n) = Aqj + B̃ (n) q̄t. Then the value function of a product line operated by a low-type firm,
(8) takes the following form

VL (qj , n) = Aqj +B (n) q̄t (A3)

where

A ≡ π

r + τ
; and [r − g + ξ + τ + ϕ]B (n) = ξAηαn+1 + ϕB̃ (n) + ξB (n+ 1) ;

and B̃(n) is defined in Lemma 2 below.

Proof of Lemma 1. We conjecture that the value function for low-type firms takes the form
in (A3) . Substituting this conjecture into (8), we get

r [Aqj +B (n) q̄t]−B (n) gq̄t = πqj + ξAq̄tηα
n+1 + ξ [B (n+ 1) q̄t −B (n) q̄t]

−τAqj − τB (n) q̄t + ϕ
[
Aqj + q̄tB̃ (n)−Aqj −B (n) q̄t

]
.

Equating the coeffi cients on qj and q̄t, we obtain

rAqj = πqj − τAqj ; and
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rB (n) q̄t −B (n) gq̄t = ξAq̄tηα
n+1 + q̄tξ [B (n+ 1)−B (n)]− τB (n) q̄t + q̄tϕ

[
B̃ (n)−B (n)

]
.

Solving these equations for A and B (n), taking B̃ (n) as given (it will be determined in Lemma 2)
completes the proof.

The form of the value function in (A3) is intuitive. It depends linearly on current productivity,
qj , which determines the current flow of profits. It also depends on current economy-wide technol-
ogy, q̄t, since all innovations, including incremental ones, build on this. Finally, it is decreasing in
n (because B(n) is decreasing as we will see) since a higher n implies that the next incremental
innovation will increase productivity by less.

Next, substitute (11) into (9) to obtain a simplified form of the value function of a product line
operated by a high-type firm as

rVH (qj , n)− V̇H (qj , n) = max

{
πqj + ξ

[
VH
(
qj + q̄tηα

n+1, n+ 1
)
− VH (qj , n)

]
;

πqj + ΛθH q̄
a∗EVH(q̄t)

}
−τVH (qj , n) + ψΛθHEVH(q̄t).

We next characterize the solution to this value function and also determine the allocation of
managers to different product lines (and to incremental and radical innovations).

Lemma 2 The value function in (9) takes the following form

VH (qj , n) = Aqj + q̄tB̃ (n) , (A4)

where A and B(n) are as defined in Proposition 1) and B̃ (n) is given by

[r − g + τ ] B̃ (n) = ψ
[
A (1 + η) + B̃ (0)

]
+

 ξ
[
Ãηαn+1 + B̃ (n+ 1)− B̃ (n)

]
for n < n∗

ΛθH q̄
a∗
[
(1 + η) Ã+ B̃ (0)

]
for n ≥ n∗

, (A5)

where

n∗ = min
n′ ∈Z+

n′ such that ξ
[
Aηαn

′+1 + B̃
(
n′ + 1

)
− B̃

(
n′
)]
≤ ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]
. (A6)

Proof of Lemma 2. We now conjecture that the value function for high-type firms takes the
form in (A4), and substitute this into (9) to obtain

(r + τ)
[
Aqj + q̄tB̃ (n)

]
−gq̄tB̃ (n) = πqj+ψΛθH

[
Aq̄t +Aηq̄t + q̄tB̃ (0)

]
+max

 q̄tξ
[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]
;

ΛθH q̄
a∗
[
Aq̄t +Aηq̄t + q̄tB̃ (0)

]  .

Once again equating coeffi cients, we obtain A = π
r+τ and

(r − g + τ) B̃ (n) = ψΛθH

[
A (1 + η) + B̃ (0)

]
+ max

 ξ
[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]
;

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]  .

(A7)
Let us next define B̂ (n) as the solution to the equation

(r − g + τ) B̂ (n) = ψΛθH

[
A (1 + η) + B̃ (0)

]
+ ξ

[
Aηαn+1 + B̂ (n+ 1)− B̂ (n)

]
.

Under the hypothetical scenario where the max operator in (A7) always picks the first term,
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we have B̃ (n) = B̂ (n). Collecting terms,

B̂ (n) = βψ̂/ξ + βAηαn+1 + βB̂ (n+ 1) , (A8)

where β = ξ
(r−g+τ+ξ) and ψ̂ = ψΛθH

[
A (1 + η) + B̃ (0)

]
. Note that (A8) defines a contraction

(in particular, it satisfies the monotonicity and discounting suffi cient conditions of Blackwell, e.g.,
Theorem 3.3 in Stokey and Lucas, 1989). Since, in addition, βAηαn+1 is strictly decreasing in n,
B̂ (n) is strictly decreasing as well (e.g., Theorem 4.7 in Stokey and Lucas, 1989). Now if n∗ =∞
(meaning that incremental innovations were always optimal), then we would have B̃ (n) = B̂ (n).

The other option in the max operator, ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
, does not depend on n

and is strictly positive. Moreover, note that for n large, B̂ (n) limits to ψ̂
r−g+τ . This is

strictly less than what a firm can obtain by switching to radical innovation at n, B̃ (n) =
ψ̂+ΛθH q̄

a∗ [(1+η)A+B̃(0)]
r−g+τ . Therefore, there exists a smallest integer n∗ (which could be zero) such that

ξ
[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]
> ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]
for all n < n∗, which verifies the

definition of n∗ in (A6). By the definition of n∗, we have that ξ
[
Aηαn

∗+1 + B̃ (n∗ + 1)− B̃ (n∗)
]
≤

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
. Now there are two cases to consider:

1. ξ
[
Aηαn

∗+1 + B̃ (n∗ + 1)− B̃ (n∗)
]
< ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]
. Then, at n∗ it is strictly

optimal to switch to radical innovation, and thus λn∗ = 1.

2. ξ
[
Aηαn

∗+1 + B̃ (n∗ + 1)− B̃ (n∗)
]

= ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
. In this case, firms are in-

different between incremental and radical innovation at n∗, and thus λn∗ ∈ [0, 1].

We summarize these two cases with the complementary slackness condition

λn∗ ≤ 1, ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
− ξ

[
Aηαn

∗+1 + B̃ (n∗ + 1)− B̃ (n∗)
]
≥ 0 and (A9)[

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
− ξ

[
Aηαn

∗+1 + B̃ (n∗ + 1)− B̃ (n∗)
]]
× (1− λn∗) = 0.

Observe also that with the same argument we used for B̂ (n), B̃ (n) can be proved to be (weakly)
decreasing in n as claimed following the proof of Lemma 2 (since B̃ (n) is defined by a contraction
which maps decreasing functions into themselves).

Finally, we prove that λn = 1 for all n > n∗. Suppose not. To obtain a contradiction, define
b̃(n) = Aηαn + B̃ (n)− B̃ (n− 1), and subtract (A7) lagged once from itself, which gives

(r − g + τ) b̃(n)+max

{
ξb̃(n);

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

] } = (r − g + τ)Aηαn+max

{
ξb̃(n+ 1);

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

] } .
(A10)

We next verify that b̃(n) is a contraction over the set of continuous functions that are decreasing
in n. To show that it is a contraction, we just verify the suffi ciency conditions of Blackwell (e.g.,
Theorem 3.3 in Stokey and Lucas, 1989). Let the left-hand side of (A10) be denoted by F (b̃(n)).
Clearly, F is strictly monotone, and thus has a strictly monotone inverse F−1. Then, (A10) can be
written as

b̃(n) = F−1
[
(r − g + τ)Aηαn + max

{
ξb̃(n+ 1); ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]}]
, (A11)
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and thus
b̃(·) = T (b̃(·)),

where the operator T : D(Z+)→ D(Z+) is defined by the right-hand side of the previous expression
and D(Z+) is the set of decreasing continuous functions over Z+. Since (r − g + τ)Aηαn is strictly
decreasing and F−1 is increasing, T maps decreasing continuous functions into themselves (and in
fact, it maps them into strictly decreasing functions). That T satisfies monotonicity is immediate.

To see that it satisfies the discounting condition as well, we will show that for any c > 0, T (b̃(·)+

c) ≤ T (b̃(·)) + βc for some β < 1. First suppose that ξb̃(n+ 1) + ξc ≤ ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
(case (i)). In this case,

T (b̃(n+ 1) + c) = F−1
[
(r − g + τ)Aηαn + ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]]
= T (b̃(n+ 1)). (A12)

(Note that here we are using T (b̃(n+ 1)) to designate the value of b̃(n) as given by (A11) evaluated
at a specific n, while T (b̃(·)) denotes the entire mapping).

Suppose, alternatively, that we are in case (ii), where ξb̃(n + 1) + ξc >

ΛθHAq̄
a∗
[
(1 + η)A+ B̃ (0)

]
. In this case, since b̃(n) is decreasing, the fact that

ξb̃(n+1)+ξc > ΛθHAq̄
a∗
[
(1 + η)A+ B̃ (0)

]
implies that ξb̃(n)+ξc > ΛθHAq̄

a∗
[
(1 + η)A+ B̃ (0)

]
,

and thus

T (b̃(n) + c) = F−1[(r − g + τ)Aηαn + ξb̃(n+ 1) + ξc]

=
r − g + τ

r − g + τ + ξ
Aηαn +

ξ

r − g + τ + ξ
b̃(n+ 1) +

ξ

r − g + τ + ξ
c

≤ T (b̃(n+ 1)) +
ξ

r − g + τ + ξ
c. (A13)

where the second line follows from the observation just proceeding the equation, since in this case,
F−1(b) = b/(r − g + τ + ξ), and the third line follows because

T (b̃(n+ 1)) = F−1
[
(r − g + τ)Aηαn + max

{
ξb̃(n+ 1); ΛθH q̄

a∗
[
(1 + η)A+ B̃ (0)

]}]
≥ F−1

[
(r − g + τ)Aηαn + ξb̃(n+ 1)

]
.

Therefore, combining cases (i) and (ii), i.e. (A12) and (A13), we have that

T (b̃(·) + c) ≤ T (b̃(·)) +
ξ

r − g + τ + ξ
c.

Then, by setting β = ξ
r−g+τ+ξ < 1, the discounting condition follows.

We thus conclude that b̃ is a decreasing continuous function. Moreover, because T maps de-
creasing functions into strictly decreasing functions, b̃ is in fact strictly decreasing. Next, by the

definition of n∗, b̃(n∗) ≤ ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
, and since b̃ is strictly decreasing, we have

b̃(n∗ + 1) < ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
. But this yields a contradiction with λn∗+1 < 1, establish-

ing the desired result.
The intuition for this high-type value function is similar to that for Proposition 1, except that

the dependence on the number of prior innovations in the current technology cluster, n, is more
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complicated since when n exceeds n∗, a high-type firm will switch to radical innovation. This
critical value n∗ is given by (A6) as the smallest integer such that pursuing incremental innovations
is no longer strictly optimal.

Proposition 1 then follows directly from Lemma 1 and 2.�
The derivation of the stationary distribution and proof of existence of general equilibrium are

provided in Appendix B.

Proof of Proposition 2

The value of a product line operated by low- and high-type firms can now be written, respectively,
as:

rVL (qj , n)− V̇L (qj , n) = maxa {πqj + q̄tf (a)− wa,t}+ ξ
[
VL
(
qj + ηn+1, n+ 1

)
− VL (qj , n)

]
−τVL (qj , n) + ϕ [VH (qj , n)− VL (qj , n)] ,

and

rVH (qj , n)− V̇H (qj , n) = max

 πqj + maxa

{
q̄tf (a)− wa,t + ξ

[
VH
(
qj + ηn+1, n+ 1

)
−VH (qj , n)

]}
;

πqj + maxa≥0 {q̄tf (a) + ΛθH q̄
aEVH(t)− wa,t}


−τVH (qj , n) + ψΛθHEVH(t).

Here note that, with a slight abuse of notation, we wrote EVH(t) instead of EVH(q̄t) for the value
of a new radical innovation, since this depends in general not just on average current productivity
in the economy, q̄t, but also on the distribution of product lines across different states. All the
same, in the stationary equilibrium it will clearly grow at the same rate as q̄t, g. Second, ηn is now
a function of both the current productivity of the firm and the average current productivity in the
economy, q̄t.

With an argument similar to that in the previous subsection, the equilibrium wage schedule for
managers will be given by

wa,t =

{
f (a) q̄t for a > a∗

f (a) q̄t + ΛθH
[
q̄a − q̄a∗

]
EVH(t) for a ≤ a∗

This enables us to write simplified versions of the value functions as:

rVL (qj , n)− V̇L (qj , n) = πqj + ξ
[
VL
(
qj + ηn+1, n+ 1

)
− VL (qj , n)

]
−τVL (qj , n) + ϕ [VH (qj , n)− VL (qj , n)]

and

rVH (qj , n)− V̇H (qj , n) = max

{
πqj + ξ

[
VH
(
qj + ηn+1, n+ 1

)
− VH (qj , n)

]
;

πqj + ΛθH q̄
a∗EVH(t)

}
−τVH (qj , n) + ψΛθHEVH(t).

Writing explicitly ηn+1,t(qn,t) as the incremental improvement in productivity starting from
quality qn,t that has been improved n times already and average quality in the economy is q̄t
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(subsumed in the time argument t), we have

(r + τ)VH (qn,t, n)− V̇H (qn,t, n) = πqn,t + max

{
ξ
[
VH
(
qn,t + ηn+1,t(qn,t), n+ 1

)
− VH (qn,t, n)

]
;

ΛθH q̄
aEVH(t)

}
+ψΛθHEVH(t).

The threshold number of incremental innovations as a function of current productivity, n∗t (q)
equivalently defines a threshold value of productivity q∗n,t as a function of the number of incremental
innovations. Clearly this threshold productivity level is defined as the value that sets the two terms
in the max operator equal to each other. Thus

VH
(
q∗n,t + ηn+1,t(q

∗
n,t), n+ 1

)
− VH

(
q∗n,t, n

)
=

ΛθH q̄
a

ξ
EVH(t), (A14)

and at this value, we also have

(r + τ)VH
(
q∗n,t, n

)
− V̇H

(
q∗n,t, n

)
= πq∗n,t + ΛθH q̄

aEVH(t) + ψΛθHEVH(t). (A15)

Now we will consider two alternative cases:
Case 1:

q∗n+1,t ≥ q∗n,t + ηn+1,t(q
∗
n,t). (A16)

This condition implies that if a particular high-type firm finds it optimal to switch to radical
innovation today, but instead undertakes a successful incremental innovation (as a deviation off-the-
equilibrium path), then subsequently it will still want to immediately switch to radical innovation.

Under this case, we have

(r + τ)VH
(
q∗n,t + ηn+1,t(q

∗
n,t), n+ 1

)
− V̇H

(
q∗n,t + ηn+1,t(q

∗
n,t), n+ 1

)
(A17)

= πq∗n,t + πηn+1,t(q
∗
n,t) + ΛθH q̄

aEVH(t) + ψΛθHEVH(t).

This follows from the fact that, by definition, in this case, at q∗n,t + ηn+1,t(q
∗
n,t), the firm will want

to switch to radical innovation.
Now differentiating (A14) with respect to time, we have

V̇H
(
q∗n,t + ηn+1,t(q

∗
n,t), n+ 1

)
− V̇H

(
q∗n,t, n

)
=

ΛθH q̄
a

ξ
∂EVH(t)/∂t =

ΛθH q̄
a

ξ
gEVH(t), (A18)

where, in the second line, we have used the fact that in a stationary equilibrium EVH(t) grows at
the rate g. Subtracting (A15) from (A17) and using (A18), we obtain:

(r + τ)[VH
(
q∗n,t + ηn+1,t(q

∗
n,t), n+ 1

)
− VH

(
q∗n,t, n

)
] = πηn+1,t(q

∗
n,t) +

ΛθH q̄
a

ξ
gEVH(t). (A19)

Then, combining (A14) and (A19) we can derive

πηn+1,t(q
∗
n,t) =

r − g + τ

ξ
ΛθH q̄

aEVH(t). (A20)

In this case, for all q less than q∗n,t, it is optimal to switch to radical innovation.
Now let us define

vt ≡
r − g + τ

πξ
ΛθH q̄

aEVH(t), (A21)
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which is independent of both q and n. Using (A21) equation (A20) can be written as

[κq̄t + (1− κ)q∗n,t]ηα
n+1 = vt, (A22)

or

q∗n,t =
vt/ηα

n+1 − κq̄t
1− κ . (A23)

This equation implies that q∗n,t is increasing in n or equivalently that n
∗
t (q) is increasing in q.

We next derive the condition under which (A16) indeed applies. For this reason, note that from
(A22) written for n+ 2 incremental innovations, we have

q∗n+1,t =
vt/ηα

n+2 − κq̄t
1− κ . (A24)

Combining equations (A23) and (A24), we obtain that (A16) is satisfied if

(1− κ)ηαn+2 + α ≤ 1. (A25)

Thus whenever (A25) holds (and we are in Case 1), we have the desired result that n∗t (q) is increasing
in q. We next establish that whenever the converse of (A25) holds, the same result applies.

Case 2:
q∗n+1,t − ηn+1,t(q

∗
n,t) < q∗n,t. (A26)

This implies that if a high-type firm is indifferent between radical and incremental innovation at
n + 1st prior incremental innovations at time t, then it would have preferred to switch to radical
innovation at nth prior incremental innovations. This condition is clearly the complement of (A16).

In this case, start with q∗n+1,t, which satisfies (A17). Under condition (A26), q
∗
n,t satisfies (A15),

so we again arrive at (A14), (A20) and (A23). But then from (A23) q∗n,t is increasing in n or n
∗
t (q)

is increasing in q.
We next verify that Case 2 applies for the complement of the parameter values for which (A25)

holds. Note that the same expressions for q∗n+1,t as in (A24) again applies under Case 2. Thus the
condition for (A26) to be satisfied, with an identical argument, is

(1− κ)ηαn+2 + α > 1,

which is indeed the complement of (A25).
Consequently, regardless of whether (A25) or its converse holds, equation (A23) applies, and

q∗n,t is increasing in n (or equivalently, n
∗
t (q) is increasing in q). This completes the proof.�

A2 Citation Patterns

The next example provides more details on the evolution of technology clusters and the citation
patterns for the patents related to the incremental and radical innovations. It illustrates that
radical innovations, which create new technology clusters, tend to receive more citations and have
greater “generality”– implications we will investigate in our empirical work.
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Example 1 The following chart provides an illustrative example focusing on two product lines:

First product line:
|
|
|

η0︸︷︷︸
P f1

1

η1︸︷︷︸
P f1

2

η2︸︷︷︸
P f1

6︸ ︷︷ ︸
Tech Cluster 1

|
|
|

η0︸︷︷︸
P f3

10

η1︸︷︷︸
P f3

11︸ ︷︷ ︸
Tech Cluster 2

|
|
|

η0︸︷︷︸
P f4

12

η1︸︷︷︸
P f4

13

η2︸︷︷︸
P f4

14︸ ︷︷ ︸
Tech Cluster 3

Second product line:
|
|
|

η0︸︷︷︸
P f2

3

η1︸︷︷︸
P f2

4

η2︸︷︷︸
P f2

5︸ ︷︷ ︸
Tech Cluster 1

|
|
|

η0︸︷︷︸
P f1

7

η1︸︷︷︸
P f1

8

η2︸︷︷︸
P f1

9︸ ︷︷ ︸
Tech Cluster 2

Here P fmn denotes patent n belonging to firm fm, and ηn denotes its step size as described in
equation (5). In this example, P f1

1 , P f2
3 , P f1

7 , P f3
10 and P

f4
12 are radical innovations starting new

technology clusters and come from high-type firms (f1, f2, f3, and f4) operating in other product
lines. The productivity improvement due to these patents is η0. Incremental innovations then take
place within these technology clusters. For instance, P f1

2 , and P
f1
6 are incremental innovations in

cluster 1 by firm f1, increasing productivity by step sizes η1 and η2 < η1, respectively.
It is natural to assume that each incremental innovation will cite all previous innovations in its

technology cluster, which is the pattern shown in the next figure.

Citation Network

Note: This example illustrates the citations received by patents P f11 ,P
f1
2 ,P

f2
3 , and P f24 .

In addition, because a radical innovation is recombining ideas from its own product line and the
product line on which it is building, it will cite the fundamental ideas encapsulated in the patents
that initiated the two technology clusters. For this reason, as shown in the figure below, P f1

7 cites
the patents in the technology cluster over which it is innovating, as well as the patents initiating
its technology cluster of origin and its destination technology cluster, P f1

1 and P f2
3 , respectively,

while P f1
1 receives cites from incremental innovations within its technology cluster, from new radical

innovations on this product line, and from radical innovations based on this technology taking place
in other product lines. As a result, a radical innovation tends to receive more citations as well as
more “general”citations; it will also be heavily overrepresented among “tail innovations,”meaning
among patents receiving the highest number of citations. These are the patterns we will explore in
our empirical work.

39



References

Abrams, D. S., U. Akcigit, and J. Popadak (2013). Patent Value and Citations: Creative
Destruction or Defensive Disruption? National Bureau of Economic Research Working Paper 19763.

Acemoglu, D., U. Akcigit, H. Alp, N. Bloom, and W. R. Kerr (2018). Innovation, Reallocation
and Growth. American Economic Review, 108(11), 3450-3491.

Akcigit, U. and W. R. Kerr (2018). Growth through Heterogeneous Innovations. Journal of
Political Economy, 126(4), 1374-1443.

Arellano, M. and S. Bond (1991). Some Tests of Specification for Panel Data: Monte Carlo
Evidence and an Application to Employment Equations. Review of Economic Studies, 58(2), 277-
297.

Arrow, K. (1962). Economic Welfare and the Allocation of Resources for Invention. NBER
Chapters, 609-626.

Azoulay, P., G. Manso and J. G. Zivin (2011). Incentives and Creativity: Evidence from the
Academic Life Sciences. RAND Journal of Economics 42(3), 527-544.

Azoulay, P., J. G. Zivin, and J. Wang (2010). Superstar Extinction. Quarterly Journal of
Economics. 125(2), 549-589.

Bandiera, O., S. Hansen, A. Prat, and R. Sadun (2019) CEO Behavior and Firm Performance.
Journal of Political Economy (forthcoming).

Barker, V. L., and G. C. Mueller (2002). CEO Characteristics and Firm R&D Spending.
Management Science, 48(6), 782-801.

Benmelech, E., and C. Frydman (2014). Military CEOs. National Bureau of Economic Research
Working Paper 19782.

Bennedsen, M., F. Pérez-González, and D. Wolfenzon (2008). Do CEOs Matter? Stanford GSB
Working Paper.

Bertrand, M. and A. Schoar (2003). Managing with Style: The Effect of Managers on Firm
Policies. Quarterly Journal of Economics, 118(4), 1169-1208.

Bloom, N., and J. Van Reenen (2007). Measuring and Explaining Management Practices across
Firms and Countries. Quarterly Journal of Economics, 122(4), 1351-1408.

Bloom, N., and J. Van Reenen (2010). Why Do Management Practices Differ across Firms and
Countries? Journal of Economic Perspectives, 24(1), 203-224.

Chari, V.V., and H. Hopenhayn (1991). Vintage Human Capital, Growth, and the Diffusion of
New Technology. Journal of Political Economy, 99(6), 1142—1165.

Christensen, C. (1997). The Innovator’s Dilemma: When New Technologies Cause Great Firms
to Fail. Harvard Business Press.

Fogli A. and L. Veldkamp (2013). Germs, Social Networks and Growth. National Bureau of
Economic Research Working Paper 18470.

Foster, L., J. Haltiwanger, and C. J. Krizan (2001). Aggregate Productivity Growth: Lessons
from Microeconomic Evidence. New Directions in Productivity Analysis (eds. E. Dean, M. Harper,
and C. Hulten), University of Chicago Press, 303-372.

Galenson D. and B. Weinberg (1999). Age and the Quality of Work: The Case of Modern
American Painters. National Bureau of Economic Research Working Paper 7122.

Galenson D. and B. Weinberg (2001). Creating Modern Art: The Changing Careers of Painters
in France From Impressionism to Cubism. American Economic Review, 91 (4), 1063-1071.

Garicano, L. (2000). Hierarchies and the Organization of Knowledge in Production. Journal of
Political Economy, 108(5), 874-904.

Garicano, L., and E. Rossi-Hansberg (2004). Inequality and the Organization of Knowledge.
American Economic Review, 94(2), 197-202.

40



Gorodnichenko Y. and G. Roland (2012). Culture, Institutions and the Wealth of Nations. UC
Berkeley Working Paper.

Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2001). The NBER Patent Citation Data File:
Lessons, Insights and Methodological Tools. National Bureau of Economic Research Working Paper
8498.

Harhoff, D., F. Narin, F. M. Scherer, and K. Vopel (1999). Citation Frequency and the Value
of Patented Inventions. Review of Economics and Statistics, 81(3), 511-515.

Hofstede, G. H. (2001). Culture’s Consequences: Comparing Values, Behaviors, Institutions
and Organizations across Nations. Sage.

Hurst, E. and B. Pugsley (2011). What Do Small Businesses Do? Brookings Papers on Economic
Activity, Fall 2011.

Jones, B. F. (2009). The Burden of Knowledge and the Death of the Renaissance Man: Is
Innovation Getting Harder? Review of Economic Studies, 76 (1), 283-317.

Jones, B. F. (2010). Age and Great Invention. Review of Economics and Statistics, 92 (1),
1-14.

Jones, B. F. and B. Weinberg (2011). A Dynamics and Scientific Creativity. Proceedings of the
National Academy of Sciences, 108 (47), 18910-18914.

Klette, T. J. and S. Kortum (2004). Innovating Firms and Aggregate Innovation. Journal of
Political Economy, 112, 986-1018.

Kogan, L., D. Papanikolaou, A. Seru, and N. Stoffman (2012). Technological Innovation, Re-
source Allocation, and Growth. National Bureau of Economic Research Working Paper 17769.

Lai, R., A. D’Amour, A. Yu, Y. Sun, and L. Fleming (2009). Disambiguation and Co-author
Networks of the US Patent Inventor Database. Harvard Business School Working Paper.

Lentz, R., and D. Mortensen (2008). An Empirical Model of Growth through Product Innova-
tion. Econometrica, 76 (2008), 1317-1373.

Lucas Jr, R. (1978). On the Size Distribution of Business Firms. Bell Journal of Economics,
9(2), 508-523.

MacDonald, G., and M. S. Weisbach (2004). The Economics of Has-beens. Journal of Political
Economy, 112(1), S289-S310.

Sampat, B. N. and A. A. Ziedonis (2004). Patent Citations and the Economic Value of Patents.
In Handbook of Quantitative Science and Technology Research, 277-298. Springer.

Sarada, and Tocoian, O. (2015). Is It All About Who You Know? Prior Work Connections and
Entrepreneurial Success. Duke University Working Paper.

Schumpeter, J. A. (1934). The Theory of Economic Development: An Inquiry into Profits,
Capital, Credit, Interest, and the Business Cycle. University of Illinois at Urbana-Champaign’s
Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.

Stokey, N. and R. Lucas Jr. (1989) Recursive Methods in Economic Dynamics, Harvard Uni-
versity Press.

Syverson, C (2011). What Determines Productivity? Journal of Economic Literature, 49(2),
326—65.

Trajtenberg, M. (1990). A Penny for Your Quotes: Patent Citations and the Value of Innova-
tions. RAND Journal of Economics, 172-187.

Weinberg B. and D. Galenson (2005). Creative Careers: Lifecycles of Noble Laureates in
Economics. National Bureau of Economic Research Working Paper 11799.

Weitzman, M. (1998). Recombinant Growth. Quarterly Journal of Economics, 113(2), 331-360.

41



Figures and Empirical Results

Table 1: Summary Statistics

Panel A: Descriptive Statistics

Variable Observations Mean Standard Deviation

Unbalanced Firm Sample (Annual Firm Observations, 1992-2004)

CEO age 7111 55.3 6.84
average manager age 7111 52.3 4.38
innovation quality 7111 15.9 10.9
superstar fraction 7111 9.91 10.7
tail innovation 7111 1.70 2.66
generality 6232 18.5 9.96
innovation quality (5 years) 4562 8.69 5.35
superstar fraction (best patent) 7111 33.0 20.0
tail innovation (99/50) 5803 3.41 5.42
originality 7091 27.1 8.49
log patents 7111 5.61 1.60
log employment 7111 3.71 1.51
log sales 7111 4.14 1.61
firm age 7111 35.1 16.3
profitability 7111 .009 1.28
indebtedness 7100 .776 .843
log physical capital 7091 7.96 1.68
R&D intensity 5922 .018 .087
CEO change probability (=1 if changed) 5387 .129 .335
CEO age change (unconditional) 5387 .004 4.49
CEO age change (conditional on CEO change) 693 -6.74 10.2
Change in innovation quality within firm over time 5387 -2.46 15.2
Change in superstar fraction within firm over time 5387 -1.17 13.6
Change in tail innovations within firm over time 5387 -.329 7.97
Change in generality within firm over time 4650 -2.31 14.7

Patent Sample (1992-2004)

CEO age 316,516 55.7 6.77
inventor age 316,516 5.30 4.93
innovation quality 316,516 18.6 27.5
tail innovation (above 99) 316,516 18.7 136
tail innovation (above 90) 316,516 165 371
generality 263,461 21.9 24.0
log patents 316,516 5.63 1.59
log employment 316,516 3.73 1.49
log sales 316,516 4.15 1.60
inventor team size 316,516 2.59 1.74
maximum inventor patents 316,516 23.6 24.6

- Table 1 continued on next page -
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Panel B: Correlation Matrix of Firm-Level Innovation Variables
innovation quality superstar fraction tail innovation generality

innovation quality 1.000
superstar fraction 0.796 1.000
tail innovation 0.608 0.591 1.000
generality 0.435 0.140 -0.012 1.000

Panel C: Correlation Matrix of Patent-Level Innovation Variables

innovation quality tail innovation tail innovation generality
(above 99) (above 90)

innovation quality 1.000
tail innovation (above 99) 0.662 1.000
tail innovation (above 90) 0.696 0.305 1.000
generality 0.152 0.034 0.098 1.000

Notes: All statistics for the firm-level samples are weighted by the number of patents of the firm. Innovation quality

is the average number of citations per patent (using the truncation correction weights devised by Hall, Jaffe, and

Trajtenberg, 2001); superstar fraction is the fraction of patents accounted for by superstar researchers (those above the

95th percentile of the citation distribution); tail innovation is the fraction of patents of a firm above the 99th percentile

of the citation distribution divided by all its patents; and the generality index measures the dispersion of citations

received across two-digit IPC technology classes, whereas the originality index measures the dispersion of citations made

by the patent to other patents. CEO age is the age of the CEO and average manager age is the average age of the

top management, both from the Execucomp dataset. The unbalanced firm panel is a sample of firms from Compustat

with at least one year of complete data between 1992 and 2004. Profitability is net income over sales. Indebted-

ness is total liabilities over sales. Physical capital is total net plant, property, and equipment. R&D intensity is R&D

expenditures over sales, winsorized at the 99th percentile. See the text for the definition of other variables and further details.

Table 2: Baseline Cross-Sectional Regressions

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.168 -0.319 -0.078 -0.171
(0.075) (0.133) (0.032) (0.044)

firm age -0.075 -0.102 -0.016 -0.017
(0.025) (0.036) (0.007) (0.017)

log employment -1.208 -2.281 -0.386 -1.150
(0.852) (1.191) (0.248) (0.656)

log sales 1.477 2.071 0.254 1.292
(0.812) (1.107) (0.229) (0.574)

log patent -0.367 0.002 0.099 -0.080
(0.294) (0.556) (0.078) (0.253)

N 7,111 7,111 7,111 6,232

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights.

The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The key right-hand side

variable is average CEO age (constant over time). Robust standard errors clustered at the firm level are in parentheses. A

full set of four-digit SIC dummies, and year dummies (and thus no firm dummies) are included as controls. See text and

notes to Table 1 for variable definitions.
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Table 3: Cross-Sectional Regressions — Robustness

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Unweighted

CEO age -0.105 -0.199 -0.042 -0.041
(0.056) (0.073) (0.024) (0.047)

Panel B: Median Regression

CEO age -0.202 -0.467 -0.061 -0.071
(0.085) (0.078) (0.004) (0.010)

Panel C: No Covariates Except Time and SIC4 Fixed Effects

CEO age -0.166 -0.335 -0.085 -0.164
(0.074) (0.146) (0.033) (0.044)

Panel D: With SIC2 Dummies

CEO age -0.192 -0.371 -0.070 -0.010
(0.044) (0.084) (0.021) (0.076)

Panel E: With SIC3 Dummies

CEO age -0.188 -0.361 -0.077 -0.066
(0.048) (0.097) (0.024) (0.063)

Panel F: With Additional Controls

CEO age -0.167 -0.315 -0.077 -0.174
(0.071) (0.127) (0.029) (0.044)

Panel G: With Additional Controls Plus R&D Intensity

CEO age -0.173 -0.322 -0.080 -0.171
(0.071) (0.126) (0.028) (0.045)

R&D intensity 0.308 -2.422 0.981 1.137
(2.183) (2.353) (0.776) (1.707)

Panel H: Missing Observations as Zeroes

CEO age -0.115 -0.171 -0.034 -0.107
(0.049) (0.054) (0.017) (0.040)

Panel I: Controlling for Self-Citation Fraction

CEO age -0.116 -0.286 -0.062 -0.157
(0.047) (0.114) (0.020) (0.041)

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as

weights unless stated otherwise. The dependent variables are innovation quality, superstar fraction, tail innovation,

and generality. The key right-hand side variable is average CEO age (constant over time). Each panel is for a

different specification. Unless otherwise stated, all regressions control for firm age, log employment, log sales, log

total patents, year dummies, and four-digit SIC dummies. Robust standard errors clustered at the firm level are

in parentheses where applicable. Panel A reports the same regression in Table 2 without weights. Panel B runs

median regressions following the same design as Table 2, while dropping weights and year and industry dummies.

Panel C reports a regression without covariates except four-digit SIC dummies and year dummies. Panels D and

E control for two- and three-digit SIC dummies respectively (instead of the four-digit SIC). Panel F adds to the

specification of Table 2 profitability (profit over sales), indebtedness (debt over sales) and log physical capital.

Panel G adds to the specification of Panel F R&D intensity (R&D expenditure over sales). Panel H replaces the

missing values for dependent variables by zeroes, drops log patent count from the controls, and runs unweighted

regressions in order to extend the sample to firms which do not apply for any patents in a given year. Panel I repeats

the regression in Panel A adding self-citation fraction as a control. See text and notes to Table 1 for variable definitions.
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Table 4: Baseline Panel Regressions

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Time-varying CEO Age

CEO age -0.195 -0.259 -0.067 -0.070
(0.045) (0.069) (0.019) (0.034)

N 7,111 7,111 7,111 6,233

Panel B: CEO Age (Fixed Effects)

CEO age -0.188 -0.149 -0.048 0.036
(0.044) (0.051) (0.012) (0.029)

N 7,111 7,111 7,111 6,232

Panel C: CEO Age and Lagged CEO Age (Fixed Effects)

CEO age -0.131 -0.098 -0.035 0.031
(0.041) (0.039) (0.013) (0.026)

lagged CEO age -0.123 -0.100 -0.029 0.020
(0.051) (0.049) (0.016) (0.035)

N 5,407 5,407 5,407 4,780

Panel D: CEO Age and Lagged Dependent Var (Fixed Effects)

CEO age -0.096 -0.075 -0.037 0.037
(0.026) (0.030) (0.009) (0.024)

lagged dependent variable 0.472 0.452 0.209 0.200
(0.034) (0.046) (0.046) (0.042)

N 5,985 5,985 5,985 5,207

Panel E: CEO Age and Lead CEO Age (Fixed Effects)

CEO age -0.113 -0.084 -0.028 0.042
(0.042) (0.048) (0.011) (0.029)

lead CEO age -0.125 -0.109 -0.035 -0.007
(0.049) (0.044) (0.014) (0.028)

N 5,409 5,409 5,409 5,097

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables are innovation quality, superstar fraction, tail innovation, and generality. Robust standard errors clustered at

the firm level are in parentheses. All specifications control for log employment, log sales, log patents, year dummies, and SIC4

industry fixed effects in Panel A, and a full set of firm fixed effects in Panels B to E (and thus firm age and the four-digit SIC

dummies are no longer included). In Panels A and B, the key right-hand side variable is CEO age (in that year). Panel C is identical

to Panel B except that it also includes a one year lag of CEO age as well as current CEO age. Panel D is identical to Panel B

except that it also includes a one year lag of the dependent variable on the right-hand side. Panel E is identical to Panel B except

that it also includes a one-year lead of the of CEO age in addition to current CEO age. See text and notes to Table 1 for variable definitions.
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Table 5: Panel Regressions — Robustness

Innovation Superstar Tail Innovation Superstar Tail

Quality Fraction Innovation Quality Fraction Innovation

Panel A: Unweighted

CEO age -0.182 -0.135 -0.044 -0.175 -0.126 -0.037
(0.050) (0.041) (0.023) (0.109) (0.044) (0.036)

lead CEO age -0.022 -0.009 0.010
(0.126) (0.058) (0.043)

N 7,111 7,111 7,111 5,387 5,387 5,387

Panel B: Missing Observations as Zeroes

CEO age -0.094 -0.083 -0.031 -0.092 -0.063 -0.029
(0.035) (0.031) (0.013) (0.063) (0.036) (0.020)

lead CEO age -0.032 -0.034 -0.006
(0.072) (0.039) (0.024)

N 11,525 11,525 11,525 10,009 10,009 10,009

Panel C: High-Tech Subsample

CEO age -0.123 -0.083 -0.035 -0.048 -0.026 -0.003
(0.054) (0.082) (0.015) (0.053) (0.084) (0.017)

lead CEO age -0.115 -0.096 -0.054
(0.060) (0.056) (0.022)

N 2,089 2,089 2,089 1,698 1,698 1,698

Panel D: Low-Tech Subsample

CEO age -0.223 -0.194 -0.057 -0.167 -0.141 -0.048
(0.068) (0.064) (0.017) (0.068) (0.058) (0.014)

lead CEO age -0.110 -0.107 -0.020
(0.069) (0.057) (0.018)

N 5,022 5,022 5,022 3,689 3,689 3,689

Panel E: Controlling for Self-Citation Fraction

CEO age -0.185 -0.148 -0.048 -0.113 -0.088 -0.028
(0.044) (0.052) (0.012) (0.042) (0.049) (0.011)

lead CEO age -0.119 -0.106 -0.033
(0.048) (0.044) (0.014)

N 6,232 6,232 6,232 5,075 5,075 5,075

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables are innovation quality, superstar fraction, and tail innovation. Robust standard errors clustered at the firm level

are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of firm fixed

effects (and thus firm age and the four-digit SIC dummies are no longer included). Panel A repeats the regressions in Table 4 Panels

B and E without using weights. Panel B replaces the missing values for dependent variables by zeroes, drops log patent count from

the controls, and runs unweighted regressions in order to extend the sample to firms which do not apply for any patents in a given

year. Panels C and D are for the high-tech and low-tech subsamples. High-tech subsample includes all firms with a primary industry

classification of SIC 35 (industrial and commercial machinery and equipment and computer equipment) and 36 (electronic and other

electrical equipment and components), while the low-tech subsample includes the rest. Panel E repeats the same regressions adding

self-citation fraction as a control. See text and notes to Table 1 for variable definitions.
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Table 6: Structural Parameters g
Weighted Unweighted Description Identification

External Calibration

x = 0.05 x = 0.05 Entry rate Compustat sample
ρ = 0.02 ρ = 0.02 Discount rate Standard value
δ = 0.04 δ = 0.04 Manager death rate Compustat sample
α = 0.93 α = 0.93 Reduction rate of innovation size Akcigit and Kerr (2015)

Indirect Inference

ψ = 0.078 ψ = 0.139 Baseline radical innovation rate for high type Estimate
ΛθH = 0.005 ΛθH = 0.068 High-type innovation parameter Estimate
ϕ = 0.040 ϕ = 0.400 Transition rate from low type to high type Estimate
ξ = 0.037 ξ = 0.176 Incremental innovation rate Estimate
η = 0.433 η = 0.221 Initial innovation size Estimate
ζ = 0.272 ζ = 0.910 Probability of high-type entrant Estimate

Notes: This table documents the parameter choices and estimates. The first column displays the parameter values obtained in the

first estimation, where we target the weighted regression coefficients presented in Table 7, Panel A. The second column displays the

parameter values obtained in the second estimation, where we target the unweighted regression coefficients presented in Table 7, Panel

B. See Section 4.3 for details.

Table 7: Empirical and Model-Generated Moments
Target U.S. Data Model

Panel A: Estimation with Weighted Regression Targets

Current manager age coefficient of Table 4 Panel B Column 1 −0.188 −0.189
Lead manager age coefficient of Table 4 Panel E Column 1 −0.125 −0.125
Current manager age coefficient of Table 4 Panel E Column 1 −0.113 −0.108
Annual growth rate 5.75% 5.95%
Within-firm coefficient of variation of radical innovations 1.99 2.23
Fraction of internal patents 21.5% 21.1%

Panel B: Estimation with Unweighted Regression Targets

Current manager age coefficient of Table 5 Panel A Column 1 −0.182 −0.187
Lead manager age coefficient of Table 5 Panel A Column 4 −0.022 −0.022
Current manager age coefficient of Table 5 Panel A Column 4 −0.175 −0.176
Annual growth rate 5.75% 5.85%
Within-firm coefficient of variation of radical innovations 1.99 1.08
Fraction of internal patents 21.5% 20.7%

Notes: This table displays the empirical and model-generated moments for the indirect inference procedure under the

two estimation procedures. In the first estimation, we target the coefficient estimates from the weighted regressions in

Table 4, Panels B and E. In the second estimation, we target the coefficient estimates from the unweighted regressions

in Table 5, Panel A. The first three targets are different between the estimations, whereas the last three targets remain

the same. See Section 4.3 for details.
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Table 8: Patent-Level Panel Regressions

Innovation Quality Tail Innovation Tail Innovation Generality

(Above 99) (Above 90)

Panel A: CEO Age, Unbalanced Firm Sample, 1992-2004

CEO age -0.119 -0.314 -1.239 0.028
(0.038) (0.132) (0.413) (0.025)

N 316,516 316,516 316,516 263,641

Panel B: Inventor Age, Unbalanced Firm Sample, 1992-2004

inventor age -0.234 -0.440 -2.883 -0.019
(0.026) (0.121) (0.321) (0.022)

N 316,516 316,516 316,516 263,641

Panel C: Inventor Age, Extended Sample, 1985-2004

inventor age -0.226 -0.377 -2.842 -0.017
(0.022) (0.075) (0.293) (0.017)

N 572,169 572,169 572,169 466,378

Panel D: Inventor Age, Extended Sample, 1985-2004

inventor age -0.201 -0.327 -2.359 -0.046
(0.010) (0.036) (0.134) (0.011)

N 1,855,887 1,855,887 1,855,887 1,550,825

Panel E: CEO Age and Inventor Age, Unbalanced Firm Sample, 1992-2004

inventor age -0.233 -0.438 -2.876 -0.019
(0.026) (0.121) (0.321) (0.022)

CEO age -0.119 -0.317 -1.218 0.028
(0.036) (0.126) (0.388) (0.022)

N 316,516 316,516 316,516 263,641

Notes: Patent-level panel regressions with annual observations. The dependent variables are innovation quality at the

patent level; a dummy for the patent being above the 99th percentile of the citation distribution; dummy for the patent

being above the 90th percentile of the citation distribution; and generality index at the patent level. Robust standard

errors clustered at the firm level are in parentheses. Panel A is for our unbalanced firm sample 1992-2004 and controls for

log employment, log sales, log patents, a full set of firm fixed effects, and application year dummies, and the key right-and

side variable is CEO age. Panel B is for our unbalanced firm sample 1992-2004 and controls for log employment, log sales,

log patents, application year dummies, a full set of firm fixed effects, a full set of dummies for inventor team size, a full set

of dummies for three-digit IPC technology class dummies, and a full set of dummies for the total number of patents of the

inventor within the team with the highest number of patents, and the key right-and side variable is average inventor age.

Panel C expands the sample of Panel B to 1985-2004 and also adds Compustat firms without CEO information into the

sample. Panel D extends the sample of Panel C to include non-Compustat firms as well (hence excludes log sales and log

employment, and still includes a full set of firm fixed effects). Panel E is for our unbalanced firm sample 1992-2004 and

adds CEO age to the specification of Panel B. See text and notes to Table 1 for variable definitions.
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Table 9: Inventor Age and CEO Age,
Unbalanced Firm Sample, 1992-2004

Inventor age Inventor age

(1) (2)

CEO age 0.014 0.013
(0.006) (0.006)

N 316,516 316,516

Notes: Patent-level panel regressions with annual observations for the unbalanced firm

sample 1992-2002. The dependent variable is the average age of inventors. The first

column controls for log employment, log sales, log patents, application year dummies,

and a full set of firm fixed effects, and the second column adds to this a full set of team

size dummies and a full set of dummies for three-digit IPC technology class dummies.

See text and notes to Table 1 for variable definitions.

Table 10: Stock of Knowledge, Opportunity Cost, and Creative Innovations,
Unbalanced Firm Sample, 1992-2004

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.180 -0.216 -0.057 -0.044
(0.027) (0.027) (0.008) (0.016)

log sales 1.465 2.081 0.254 1.201
(0.449) (0.611) (0.142) (0.328)

log patent -0.394 -0.072 0.082 -0.020
(0.193) (0.257) (0.065) (0.151)

CEO age × log patent -0.005 -0.071 -0.016 -0.037
(0.014) (0.021) (0.006) (0.011)

CEO age × log sales 0.024 0.079 0.018 0.044
(0.017) (0.021) (0.006) (0.011)

N 7,111 7,111 7,111 6,232

Notes: Weighted firm-level panel regressions with annual observations for the unbalanced firm panel, 1992-2004,

with number of patents (in that year) as weights. The dependent variables are innovation quality, superstar fraction,

tail innovation, and generality. Robust standard errors clustered at the firm level are in parentheses. All regressions

also include log employment, application year dummies and a full set of dummies for four-digit SIC industries. See

text and notes to Table 1 for variable definitions.
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Figure 1: The averages for creative innovation variables (innovation quality, superstar fraction, tail innovations, and general-
ity) by CEO age, and the associated fitted line. The averages are calculated after demeaning the creative innovation variables
at the year × industry level. The label 40 stands for all ages less than or equal to 40, and 60 stands for all ages greater than
or equal to 60. See text and notes to Table 1 for variable definitions.
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Figure 2: Evolution of creative innovations for high-type firms.
The horizontal axis corresponds to the number of years since
the firm has switched to high type (which is the year of entry
for new high-type firms), and the vertical axis plots the average
probability of generating a new radical innovation for all such
firms.
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Figure 3: Evolution of CEO age for high-type firms. The
horizontal axis corresponds to the number of years since the
firm has switched to high type (which is the year of entry for
new high-type firms), and the vertical axis plots the average
age of the CEO for all such firms. Note that 26 has been
added to the age of the CEO, since the youngest manager in
the model has an age of zero, whereas this number is 26 in the
data.
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B1 Discussion of Assumptions and Microfoundations

In this part of Appendix B, we discuss the role and possible microfoundations of the critical assump-
tion underpinning the assignment of young managers to high-type firms and to radical innovation–
the comparative advantage in equation (6).

Endogenizing human capital decisions: Our key justification for (6) is that agents acquire
the knowledge available at the time they are born. Though this was imposed as a technological
feature, it can be readily endogenized (as in Chari and Hopenhayn, 1993, or MacDonald and
Weisbach, 2004). The most natural assumption here would be that agents decide when to go to
school, and an agent who goes to school for some prespecified period of time, say an interval of
length ∆ > 0, and graduates at time t acquires the frontier knowledge at that time, qt as given
in (4). Given the stationary structure of the problem, we can make two observations. First, it is
always optimal for an agent to acquire schooling immediately (rather than wait and do so at a later
date).38 Second, we can also derive a straightforward suffi cient condition ensuring that an agent
would never want to go back to school after this initial schooling interval. In particular, once again
starting in stationary equilibrium, if a manager of age a at time t does not go back to school, she
will have a discounted lifetime income of∫ ∞

0
e−(r+δ)s[q̄t+sf (a+ s) + max

{
ΛθH

[
q̄a+s − q̄a∗

]
, 0
}
EVH(q̄t+s)]ds,

while if she goes back to school, her discounted lifetime income will be∫ ∞
∆

e−(r+δ)s[q̄t+sf (a+ s) + max
{

ΛθH

[
q̄s − q̄a∗

]
, 0
}
EVH(q̄t+s)]ds.

The latter expression thus enables the agent to reduce q̄a and potentially earn more from being
assigned to high-type firms.39 However, its comparison to the previous expression makes it clear
that if f(a) and ∆ are suffi ciently large, then it will not be beneficial for a manager to go back to
school. For example, an upper bound for the discounted lifetime income from schooling is

38This is because the problem facing an agent at any two dates is identical given the stationary environment and
the constant probability of death, δ, and thus if the agent wanted to wait between time t and t′, then she would also
want to wait indefinitely, violating the transversality condition.
39Notice that in writing these expressions, we are interpreting a literally as age, so that when the manager goes

back to school, her age is not affected. Alternatively, a could stand for the manager’s experience in a particular line of
business, and in that case, a could also be reset when she goes back to schooling, which would introduce an additional
opportunity cost of returning to school. This does not have an important effect on the qualitative argument here,
though it may provide a better approximation to some applications.
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∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s)+ΛθH
[
1− q̄a

∗]
EVH(q̄t+s)]ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
q̄tΛθH

[
1− q̄a∗

]
r + δ − g e−∆(r+δ−g),

which assumes that after re-schooling the manager has the highest contribution to innovation forever
(whereas in reality her contribution would decline as she ages). On the other hand, the minimum
lifetime incomes she would obtain without going to school can be written as∫ ∆

0

e−(r+δ)s[q̄t+s inf f (a)]ds+

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
1− e−(r+δ−g)∆

r + δ − g q̄tfmin,

where fmin = inf f(a). By comparing these two expressions and noting that their first terms are
identical, we obtain a suffi cient condition for any manager to never prefer to go back to school,

ΛθH

[
1− q̄a∗

]
< e∆(r+δ−g)fmin.

As already anticipated, this condition is satisfied when ∆ or when fmin are large.
An alternative form of comparative advantage: We introduced the comparative advan-

tage of young managers in radical innovation in the simplest possible form– by assuming that they
have the same productivity in incremental innovation and greater productivity in radical innova-
tion. Similar results would obtain as well if they have comparable productivity in radical innovation
but lower productivity in incremental innovation.

Suppose, for example, that all managers have the same rate of arrival of radical innovations
given by ΛθH when they are employed by high-type firms, but the productivity of a manager aged a
in incremental innovation is ξg(a), where g(a) is increasing. In this case, the pattern of assignment
will be slightly different– it will be first the older managers who are assigned to management, but
there will still exist a critical age threshold, say a∗∗, such that managers younger than this age will
be assigned to high-type firms wishing to specialize in radical innovation. Young managers will also
earn strictly less than older managers, but radical innovations will continue to increase following a
switch from older to younger managers.

Comparative advantage from competing uses of time: Relatedly, in our baseline model,
radical innovations and the operational duties of a manager do not crowd each other out. An alter-
native, equally natural assumption is that, because seeking radical innovations is time-consuming,
it will interfere with the cost-reducing activities of the manager. Under the natural and common
assumption that all of these tasks have to be performed by a single manager (i.e., it is not possible
to add a separate manager for innovations), attempting radical innovations will have the oppor-
tunity cost of reducing the other beneficial roles of the manager. Since experienced managers are
more productive at cost reduction and other operational roles, this reasoning directly implies that
it will be younger managers who have an effective comparative advantage in radical innovations,
even if they are less productive in both operations and radical innovations than older managers.

A re-combinatorial microfoundation for comparative advantage: Another microfoun-
dation for this pattern of comparative advantage is to assume that radical innovation requires
recombining different ideas, while more experienced managers will have an expertise in exploiting
a specific set of well-established ideas (perhaps ideas with which they have worked before). Such a
microfoundation can be developed in a way that generates the pattern of comparative advantage
in our baseline model.

One advantage of this alternative line is that the reason why more experienced managers are
better at operations, but not as good as young managers in radical innovations, can be endoge-
nized. Specifically, managers may choose to invest in their ability to understand and exploit certain
technologies as they age, but this could be at the expense of remaining on top of other ideas, while
younger managers may be “jacks of all trades, masters of none,” making them less effective in
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running an established business, and as a result, giving them a comparative advantage in radical
innovation.

An organizational microfoundation for comparative advantage: Yet another possibility
leading to the pattern of matching in our model would come not from an intrinsic comparative
advantage of young managers for radical innovation, but from the potential conflict of interest
between managers and owners. Suppose that attempting radical innovation is more costly for
managers, and it is diffi cult for the owners of the firm to verify that the manager is truly attempting
radical innovations. This sort of situation will create a major conflict of interest, whereby all
managers might wish to claim that they are attempting radical innovations, but in reality may
shirk and go for the easy life. If, as it seems plausible, more experienced managers are better able
to control the flow of information out of an organization and thus hide their true activities, it might
be more diffi cult for owners to induce these experienced managers to engage in radical innovation.
It may then be cheaper and more effective to turn to more “pliable”younger managers when there
will be a switch to radical innovation.

Finite lives and risk-taking: The comparative advantage of younger managers in more
radical innovations may also come from their greater willingness to take risks, which could in turn
have biological roots or may be a consequence of the fact that, when lives are finite, they will have
longer horizon than older managers and thus tend to have greater tolerance for risk.

Managers and inventors: We have so far abstracted from inventors, which play an important
role both in practice and in our data analysis below. A final alternative structure which leads to
similar results is to assume that it is not young managers who are important for radical innovation,
but young inventors (a pattern for which we also find support in the data). But if young inven-
tors work better in a team with young managers, for example because older managers would not
communicate well with them or would attempt to block some of their ideas, there will again be a
pattern in which young managers are assigned to firms specializing in radical innovations.

B2 General Equilibrium and the Stationary Equilibrium

In this part of Appendix B, we complete the proof of existence of general equilibrium and derived
a stationary equilibrium distribution.

Consumer maximization yields the usual Euler equation, Ċ(t)
C(t) = 1

ν (r(t)−ρ),where g is the growth

rate of the economy, as well as a standard transversality condition, limt→∞A(t)e−
∫ t
0 r(s)ds = 0,

where A(t) is the value of total assets of households at time t, which come from their ownership
of the firms in the economy. In a stationary equilibrium, we have r(t) = r and Ċ(t)/C(t) = g
(because, from (3), K(t) grows at the same rate as Y (t), g). This implies

r = ρ+ νg. (B1)

Moreover, since A(t) will grow at the rate g, the transversality condition simply requires r > g, or

(1− ν)g < ρ, (B2)

which we impose as an assumption.
In a stationary equilibrium, the threshold, n∗, is constant. This is because the value function

increases linearly in q̄t, but the knowledge stock and wages of managers also increase linearly, and
in the stationary equilibrium, these two forces balance out, ensuring that n∗ is constant while VH
increases linearly in q̄t.
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Given the form of VH , EVH(q̄t), the value of a new radical innovation, can be written as

EVH(q̄t) = E
[
Ãqj + Ãηq̄t + q̄tB̃ (0)

]
= [Ã (1 + η) + B̃ (0)]q̄t

≡ vq̄t,

where the last line defines v. Then the equilibrium wage schedule simplifies to

wa,t =

{
f (a) q̄t for a > a∗

[f (a) + ΛθH(q̄a − q̄a∗)v]q̄t for a ≤ a∗ . (B3)

and is thus also linear in q̄t.
We next characterize the stationary distribution of product lines in this economy in terms of the

types of their owners and also in terms of the prior number of incremental innovations, and then
use these distributions to determine the aggregate growth rate of the economy in the stationary
equilibrium. Let us denote the fraction of product lines occupied by s-type firms (for s ∈ {L,H})
with n prior incremental innovations by µsn (these are not functions of time as we are focusing
on a stationary equilibrium). Denote the total radical destruction from s-type firms by τ s. The
stationary distribution of product lines is determined by standard flow equations equating inflows
and outflows from each state. For high types, these take the form

Outflow Inflow(
τL + ξ

)
µH0 = τH

(
1− µH0

)
+ ϕµL0 for n = 0(

τL + τH + ξ(1− λn)
)
µHn = ξµHn−1(1− λn−1) + ϕµLn for n > 0

. (B4)

Consider the first line corresponding to n = 0. Outflows from this state (which refers to products
with n = 0 operated by high-type firms) come from two sources. First, there is creative destruction
coming from low-type firms (entrants), which takes place at the rate τL per product line (and
hence multiplied by µH0 ). Second, the high-type firm operating this product line has a successful
incremental innovation, which takes place at the rate ξ (similarly multiplied by µH0 ). Inflows into
this state are due to creative destruction coming from high-type firms, which takes place at the
rate τH (multiplied by the fraction of all product lines except those that are already in this state,
thus

(
1− µH0

)
), or due to a low-type firm operating a product line at n = 0 changing its type to

high, which adds the flow rate ϕµL0 . The other lines are explained similarly, taking into account
the fact that at n, firms pursue incremental innovations with probability 1− λn, and that inflows
into product line n will depend on the probability with which high-type firms in product line n− 1
pursue incremental innovations, given by 1− λn−1.40

The flow equations for the low-type product lines can be written similarly,

Outflow Inflow(
τH + ξ + ϕ

)
µL0 = (1− µL0 )τL for n = 0(

τL + τH + ξ + ϕ
)
µLn = ξµLn−1 for n > 0

.

Since these flow equations only depend on τH and τL, they can be solved out explicitly, which is
particularly convenient for our proof of existence of a stationary equilibrium. Namely, we have

µLn =

(
ξ

τ + ξ + ϕ

)n+1 τL

ξ
. (B5)

40These equations are written under the assumption that n∗ > 0, and can be adjusted straightforwardly for the
case in which n∗ = 0.
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The creative destruction rates from low-type and high-type firms, in turn, can be computed as

τL = x (1− ζ) and τH = xζ +M

∫ a∗

0
ΛθH q̄

adF (a) + ψΛθH
∑∞

n=0
µHn , (B6)

where x is the (exogenous) entry rate, F (a) denotes the stationary distribution of manager age,
a∗ is the threshold below which managers are hired by firms to perform radical innovations, and
ψΛθH

∑∞
n=0 µ

H
n is the rate of radical innovations for high-type firms which applies regardless of

whether or not they pursue a radical innovation strategy. Low-type firms, on the other hand,
generate creative destruction only when they initially enter the economy (since they do not engage
in radical innovation). Given these quantities, the total creative destruction rate of the economy is
given as

τ = τL + τH . (B7)

Notice that we wrote the creative destruction rate coming from high-type firms as a function of
the age threshold for young managers, a∗. In equilibrium, the measure of young managers working
on radical innovations must equal the measure of firms attempting radical innovations, which gives
us the additional equilibrium condition

MF (a∗) =
∑∞

n=0
µHn (1− λn). (B8)

The final equation we need is for the aggregate growth rate. Let us combine (1) with (3) to
obtain

Y =
L

1− β

[
(1− β)

γ

] 1−β
β

q̄.

The growth rate of the economy is then equal to the growth of the average quality q̄t. After a time
interval ∆t > 0, the average quality is given by

q̄t+∆t = q̄t + ηq̄tτ∆t+ q̄tηξ∆t
[∑∞

n=0
µHn (1− λn)αn+1 +

∑∞

n=0
µLnα

n+1
]

+ o(∆t),

where we have used the fact that all radical innovations come from creative destruction, which
takes place at the rate τ , and o(∆t) denotes terms that are second order in ∆t. The growth rate
of the economy in the stationary equilibrium can then be computed as

g = ητ + ηξ
[∑∞

n=0
µHn (1− λn)αn+1 +

∑∞

n=0
µLnα

n+1
]
. (B9)

Finally, we establish the existence of a stationary equilibrium. To do this, first let us suppress the
explicit determination of n∗, and instead introduce the equivalent of the complementary slackness
condition, (A9), which determined λn∗ , for each n,

λn = 0 if ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
− ξ

[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]
< 0, (B10)

λn = 1 if ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
− ξ

[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]
> 0, and[

ΛθH q̄
a∗
[
(1 + η)A+ B̃ (0)

]
− ξ

[
Aηαn+1 + B̃ (n+ 1)− B̃ (n)

]]
× (1− λn∗) = 0.

Let us also suppress µLn as endogenous variables, instead using the explicit solutions in (B5), and
eliminate the stationary equilibrium value of the interest rate, r, from the equilibrium condition
(B1). This leaves us with the endogenous variables to be determined as: {µHn , λn}∞n=0, τ

L, τH ,
a∗ and g, which satisfy equations (B4), (B6), (B8), (B9) and (B10). Note further that there is an
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upper bound on the creative destruction rate, τ̄ , which is obtained by (counterfactually) assuming
that all product lines successfully pursue radical innovation: τ̄ = (1 + ψ) ΛθH + x. Similarly, there
is also an upper bound on the growth rate of the economy, corresponding to the growth rate that
would follow when the creative destruction rate takes its upper bound value and all innovations
have the maximal step size, η; this gives the upper bound as ḡ ≡ (τ̄ + ξ) η. We can then take the
growth rate and the creative destruction rate of the economy to lie in the compact sets, [0, ḡ] and
[0, τ̄ ], respectively.

We can further reduce the system from an infinite-dimensional one to a finite-dimensional one
by noting that b̃(n) is decreasing in τ−g, thus by taking g = ḡ and τ = 0, we can compute an upper
bound for the threshold n∗ as n̄. Given this upper bound, we derive an upper bound for a∗ given
by ā from (B8) by truncating the summation on the right-hand side at n̄, and setting λn = 0 and
µHn = 1 for all n ≤ n̄. Thus we have a finite-dimensional mapping Φ : [0, 1]n̄×[0, τ̄ ]2×[0, ā]×[0, ḡ]→
[0, 1]n̄ × [0, τ̄ ]2 × [0, ā] × [0, ḡ], which maps a compact set into itself. Moreover, (B4), (B6), (B8),
and (B9) are continuous functions, while (B10) defines an upper hemi-continuous, closed- and
convex-valued correspondence. Therefore, Φ is an upper hemi-continuous, closed- and convex-
valued correspondence, and by Kakutani’s fixed point theorem, it has a fixed point. By construction,
this fixed point is a stationary equilibrium. �
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- Additional Graphs and Tables -

Figure B1: Estimated age dummies for the creative innovation variables (innovation quality, superstar
fraction, tail innovations, and generality), and the associated fitted line. These figures repeat the regres-
sions from Table 2, where CEO age is introduced as an array of discrete dummies instead of a linear
regressor, and plot the estimated coefficients for the 21 age bins between ages of 40 and 60. The label 40
stands for all ages less than or equal to 40, and 60 stands for all ages greater than or equal to 60. See
text and notes to Table 1 for variable definitions.
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Table B1: Innovation Quality — Including Controls Incrementally

Innovation Innovation Innovation Innovation

Quality Quality Quality Quality

CEO age -0.170 -0.158 -0.174 -0.168
(0.080) (0.079) (0.085) (0.075)

log patent -0.339 -0.079 -0.224 -0.367
(0.186) (0.294) (0.298) (0.294)

log employment -0.351 -1.671 -1.208
(0.353) (0.883) (0.852)

log sales 1.440 1.477
(0.825) (0.812)

firm age -0.075
(0.025)

N 7,111 7,111 7,111 7,111

Notes: Weighted firm-level panel regressions with annual observations with number of patents

(in that year) as weights. The dependent variable is innovation quality. The key right-hand

side variable is average CEO age (constant over time). Robust standard errors clustered at the

firm level are in parentheses. A full set of four-digit SIC dummies, and year dummies (and

thus no firm dummies) are included as controls. Different from the baseline specification in Ta-

ble 2, we add the control variables incrementally. See text and notes to Table 1 for variable definitions.
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Table B2: Cross-Sectional Regressions — Further Robustness

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Balanced Sample

CEO age -0.278 -0.300 -0.117 -0.183
(0.088) (0.141) (0.041) (0.055)

N 279 279 279 279

Panel B: With Average Manager Age

average manager age -0.266 -0.536 -0.113 -0.208
(0.118) (0.185) (0.050) (0.080)

N 7,111 7,111 7,111 6,232

Panel C: High-Tech Subsample

CEO age -0.146 -0.273 -0.082 -0.180
(0.096) (0.157) (0.036) (0.050)

N 2,089 2,089 2,089 1,890

Panel D: Low-Tech Subsample

CEO age -0.232 -0.421 -0.062 -0.152
(0.090) (0.121) (0.030) (0.079)

N 5,022 5,022 5,022 4,342

Panel E: Non-Pharmaceuticals Subsample

CEO age -0.154 -0.306 -0.076 -0.174
(0.073) (0.132) (0.032) (0.045)

N 6,609 6,609 6,609 5,810

Notes: Weighted firm-level panel regressions (without fixed effects) with annual observations with number of patents

(in that year) as weights unless stated otherwise. The dependent variables are innovation quality, superstar fraction,

tail innovation, and generality. The key right-hand side variable is average CEO age (constant over time). Each panel

is for a different specification. Unless otherwise stated, all regressions control for firm age, log employment, log sales,

log total patents, year dummies, and four-digit SIC dummies. Robust standard errors clustered at the firm level are in

parentheses. Panel A displays a cross-sectional regression where all variables are the averages over the years 1995-2000

for a balanced sample of 279 firms. Panel B uses average manager age instead of CEO age. Panels C and D are for the

high-tech and low-tech subsamples. High-tech subsample includes all firms with a primary industry classification of SIC

35 (industrial and commercial machinery and equipment and computer equipment) and 36 (electronic and other electrical

equipment and components), while the low-tech subsample includes the rest. Panel E repeats the regression on Table

2 while dropping the pharmaceutical sector from the sample (SIC 283). See text and notes to Table 1 for variable definitions.
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Table B3: Cross-Sectional Regressions Controlling for Recent Patent Flows

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.187 -0.333 -0.082 -0.166
(0.084) (0.135) (0.033) (0.044)

firm age -0.074 -0.103 -0.017 -0.016
(0.025) (0.036) (0.008) (0.017)

log employment -0.973 -2.104 -0.339 -1.205
(0.805) (1.174) (0.242) (0.655)

log sales 1.761 2.276 0.305 1.231
(0.788) (1.103) (0.227) (0.566)

log patent (3 yrs) -0.949 -0.432 -0.015 0.056
(0.311) (0.543) (0.085) (0.233)

N 7,111 7,111 7,111 6,232

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights.

The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The key right-hand

side variable is average CEO age (constant over time). Robust standard errors clustered at the firm level are in

parentheses. A full set of four-digit SIC dummies, and year dummies (and thus no firm dummies) are included as

controls. Different from the baseline specification in Table 2, we replace the log patent control variable with the natu-

ral logarithm of the patents created by the firm in the past three years. See text and notes to Table 1 for variable definitions.

Table B4: Cross-Sectional Regressions with Heckman Two-Step Estimation

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.081 -0.196 -0.039 -0.060
(0.040) (0.042) (0.018) (0.031)

has any patents has any patents has any patents has any patents

CEO age -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002)

N 19,708 19,708 19,708 19,708

Notes: Heckman two-step estimation results for the cross-sectional regressions in Table 2. The dependent variables are

innovation quality, superstar fraction, tail innovation, and generality. The key right-hand side variable is average CEO

age (constant over time). The sample includes all Compustat firms regardless of whether they generate any patents. The

selection criterion is whether a firm generated any patents in a given year. The control variables for the first stage are firm

age, log employment, log sales, and R&D intensity. The control variables for the second stage are the same as in Table 2.

See text and notes to Table 1 for variable definitions.

Table B5: Cross-Sectional Regressions — Time Since IPO ≥ 10 Years

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.188 -0.382 -0.080 -0.184
(0.078) (0.125) (0.030) (0.044)

N 5,259 5,259 5,259 4,599

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as

weights. The dependent variables are innovation quality, superstar fraction, tail innovation, and generality. The

key right-hand side variable is average CEO age (constant over time). Robust standard errors clustered at the firm

level are in parentheses. A full set of four-digit SIC dummies, and year dummies (and thus no firm dummies) are

included as controls. Different from the baseline specification, we exclude observations if the firm’s initial public

offering is more recent than 10 years. See text and notes to Table 1 for variable definitions.
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Table B6: Cross-Sectional Regressions — Alternative Measures

Innovation Quality Superstar Fraction Tail Innovation Originality
(5 years) (Best Patent) (90/0)

Panel A: Weighted

CEO age -0.116 -0.596 -0.159 -0.278
(0.047) (0.337) (0.064) (0.103)

N 4,562 7,111 7,111 7,091

Panel B: Unweighted

CEO age -0.056 -0.268 -0.139 -0.034
(0.045) (0.097) (0.068) (0.052)

N 4,562 7,111 7,111 7,091

Tail Innovation Employment Sales R&D
(99/50) Growth Growth Intensity

Panel C: Weighted

CEO age -0.104 -0.109 -0.144 -5.872
(0.045) (0.138) (0.131) (9.479)

N 5,803 5,387 5,387 5,922

Panel D: Unweighted

CEO age -0.070 -0.165 -0.196 -46.148
(0.041) (0.081) (0.090) (86.190)

N 5,803 5,387 5,387 5,922

First Second Internal
Renewal Renewal Innovation

Panel E: Weighted

CEO age -0.260 -0.267 0.799
(0.078) (0.102) (0.922)

N 7,111 7,111 7,091

Panel F: Unweighted

CEO age -0.048 -0.148 0.188
(0.068) (0.095) (0.377)

N 7,111 7,111 7,091

Notes: Firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables in Panels A and B are alternative measures of innovation quality (computed over the next five years),

superstar fraction (with superstars defined according to the best patent), tail innovation (with share of the patents of the

firm among all the patents above the 90th percentile of the citation distribution in the numerator), and the originality

index. The dependent variables in Panels C and D are measures of tail innovation (with fraction of patents above the

median in the denominator), employment growth and sales growth, and R&D intensity. The dependent variables in Panels

E and F are the fraction of patents that are renewed at least once (first renewal, due 4 years after patent grant), renewed

at least twice (second renewal, due 8 years after patent grant), and the fraction of internal innovations where a patent is

classified as an internal innovation if more than half of its backward citations are self-citations. The key right-hand side

variable is average CEO age (constant over time). Robust standard errors clustered at the firm level are in parentheses. All

regressions control for firm age, log employment, log sales, log total patents, year dummies and a full set of dummies for

four-digit SIC industries. Regressions in Panel A and column 1 of Panel C are weighted by total patent count. Regressions

in the last three columns of Panel C are weighted by firm employment. Regressions in Panels B and D are not weighted.

See text and notes to Table 1 for variable definitions.
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Table B7: Industry-Level Panel Regressions (SIC4)

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.261 -0.137 -0.039 -0.078
(0.069) (0.056) (0.030) (0.056)

N 2,358 2,358 2,358 2,169

Notes: Industry-level panel regressions with robust standard errors. The dependent variables are innovation

quality, superstar fraction, tail innovation, and generality, which are calculated as the industry-level averages for

the four-digit SIC industries in each year. The key right-hand side variable is the CEO age, which is calculated as

the industry-level average for the four-digit SIC industries in each year. A full set of four-digit SIC dummies, and

year dummies are included as controls. See text and notes to Table 1 for variable definitions.
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Table B8: Panel Regressions (with Fixed Effects) — Further Robustness

Innovation Superstar Tail Innovation Superstar Tail

Quality Fraction Innovation Quality Fraction Innovation

Panel A: No Covariates Except Time and Firm Fixed Effects

CEO age -0.243 -0.192 -0.059 -0.160 -0.123 -0.037
(0.059) (0.063) (0.014) (0.051) (0.056) (0.010)

lead CEO age -0.160 -0.135 -0.041
(0.055) (0.046) (0.016)

N 7,111 7,111 7,111 5,387 5,387 5,387

Panel B: With Additional Controls

CEO age -0.187 -0.149 -0.049 -0.116 -0.089 -0.029
(0.045) (0.051) (0.012) (0.044) (0.049) (0.011)

lead CEO age -0.124 -0.111 -0.035
(0.048) (0.044) (0.014)

N 7,080 7,080 7,080 5,372 5,372 5,372

Panel C: With Additional Controls Plus R&D Intensity

CEO age -0.185 -0.147 -0.048 -0.115 -0.086 -0.029
(0.046) (0.052) (0.012) (0.044) (0.050) (0.011)

lead CEO age -0.124 -0.113 -0.035
(0.049) (0.044) (0.014)

R&D intensity 0.145 -1.911 1.062 1.614 -2.258 1.446
(2.839) (2.243) (0.932) (3.277) (2.951) (1.054)

N 5,907 5,907 5,907 4,699 4,699 4,699

Panel D: Non-Pharmaceuticals Subsample

CEO age -0.188 -0.152 -0.049 -0.107 -0.085 -0.028
(0.046) (0.053) (0.013) (0.044) (0.051) (0.012)

lead CEO age -0.143 -0.124 -0.038
(0.051) (0.046) (0.015)

N 6,609 6,609 6,609 4,986 4,986 4,986

Panel E: Median Regression

CEO age -0.145 -0.095 -0.021 -0.128 -0.061 -0.018
(0.028) (0.031) (0.007) (0.014) (0.054) (0.007)

lead CEO age -0.049 -0.066 -0.008
(0.013) (0.051) (0.007)

N 7,111 7,111 7,111 5,387 5,387 5,387

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables are innovation quality, superstar fraction, and tail innovation. Robust standard errors clustered at the firm level

are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of firm fixed

effects unless mentioned otherwise. Panel A repeats the regressions in Table 4 Panels B and E where all controls except year and firm

fixed effects are dropped. Panel B repeats the same regressions while introducing the additional controls profitability, indebtedness

and log physical capital. Panel C repeats the same regression as Panel B with the addition of R&D intensity as a control. Panel

D repeats the same regressions while dropping the pharmaceuticals sector from the sample (SIC 283). Finally, Panel E reports the

results of a median regression, where we first demean all observations to remove firm fixed effects. See text and notes to Table 1 for

variable definitions.
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Table B9: Panel Regressions (with Fixed Effects) — Alternative Measures

Innovation Quality Superstar Fraction Tail Innovation Originality
(5 years) (Best Patent) (90/0)

Panel A: Weighted

CEO age -0.066 -0.109 -0.211 -0.032
(0.039) (0.063) (0.052) (0.027)

N 4,562 7,111 7,111 7,091

Panel B: Unweighted

CEO age -0.077 -0.088 -0.239 -0.038
(0.056) (0.053) (0.057) (0.041)

N 4,562 7,111 7,111 7,091

Tail Innovation Employment Sales R&D
(99/50) Growth Growth Intensity

Panel C: Weighted

CEO age -0.076 0.135 0.016 0.857
(0.023) (0.198) (0.126) (3.223)

N 5,803 5,387 5,387 5,922

Panel D: Unweighted

CEO age -0.046 -0.323 0.045 154.371
(0.036) (0.296) (0.210) (120.215)

N 5,803 5,387 5,387 5,922

Notes: Firm-level panel regressions with annual observations with number of patents (in that year) as weights. The

dependent variables in Panels A and B are alternative measures of innovation quality (computed over the next five years),

superstar fraction (with superstars defined according to the best patent), tail innovation (with share of the patents of the

firm among all the patents above the 90th percentile of the citation distribution in the numerator), and the originality

index. The dependent variables in Panels C and D are measures of tail innovation (with fraction of patents above the

median in the denominator), employment growth and sales growth, and R&D intensity. The key right-hand side variable is

CEO age. Robust standard errors clustered at the firm level are in parentheses. All regressions control for log employment,

log sales, log total patents, year and firm dummies. Regressions in Panel A and column 1 of Panel C are weighted by total

patent count. Regressions in columns 2-4 of Panel C are weighted by firm employment. Regressions in Panels B and D are

not weighted. See text and notes to Table 1 for variable definitions.
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Table B10: Continuing Inventors vs New Hires — Innovation Quality

Innovation Quality Innovation Quality Innovation Quality

(All) (New Inventors) (Continuing Inventors)

CEO age -0.188 -0.205 -0.159
(0.044) (0.045) (0.042)

N 7,111 5,769 5,541
mean of dep. var. 15.9 16.8 17.3

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The dependent

variables is the innovation quality measure calculated in three different ways. The first column uses the information from all the patents

of a firm. The second column uses the information only from patents created by new inventors, where a new inventor is defined as an

inventor who has never worked for the particular firm before. The third column uses the information only from patents created by continuing

inventors. When a patent is created by a mix of new and continuing inventors, it is weighted according to the fraction of new vs. continuing

inventors, defined as the inverse of a new inventor. The key right-hand side variable is CEO age. Robust standard errors clustered

at the firm level are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of

firm fixed effects (and thus firm age and the four-digit SIC dummies are no longer included). See text and notes to Table 1 for variable definitions.

Table B11: Continuing Inventors vs New Hires — Tail Innovations

Tail Innovations Tail Innovations Tail Innovations

(All) (New Inventors) (Continuing Inventors)

CEO age -0.048 -0.051 -0.034
(0.012) (0.020) (0.023)

N 7,111 5,769 5,541
mean of dep. var 1.70 1.89 2.05

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The dependent

variables is the tail innovation measure calculated in three different ways. The first column uses the information from all the patents of a

firm. The second column uses the information only from patents created by new inventors, where a new inventor is defined as an inventor

who has never worked for the particular firm before. The third column uses the information only from patents created by continuing

inventors. When a patent is created by a mix of new and continuing inventors, it is weighted according to the fraction of new vs. continuing

inventors, defined as the inverse of a new inventor. The key right-hand side variable is CEO age. Robust standard errors clustered at

the firm level are in parentheses. All specifications control for log employment, log sales, log patents, year dummies and a full set of firm

fixed effects (and thus firm age and the four-digit SIC dummies are no longer included). See text and notes to Table 1 for variable definitions.
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- Discussion of Assumptions and Microfoundations -

In this subsection, we discuss the role and possible microfoundations of the critical assumption underpinning the

assignment of young managers to high-type firms and to radical innovation—the comparative advantage in equation

(5).

Endogenizing human capital decisions: Our key justification for (5) is that agents acquire the knowledge

available at the time they are born. Though this was imposed as a technological feature, it can be readily endogenized

(as in Chari and Hopenhayn, 1993, or MacDonald and Weisbach, 2004). The most natural assumption here would

be that agents decide when to go to school, and an agent who goes to school for some prespecified period of time,

say an interval of length ∆ > 0, and graduates at time t acquires the frontier knowledge at that time, qt as given

in (3). Given the stationary structure of the problem, we can make two observations. First, it is always optimal for

an agent to acquire schooling immediately (rather than wait and do so at a later date).1 Second, we can also derive

a straightforward sufficient condition ensuring that an agent would never want to go back to school after this initial

schooling interval. In particular, once again starting in stationary equilibrium, if a manager of age a at time t does

not go back to school, she will have a discounted lifetime income of∫ ∞
0

e−(r+δ)s[q̄t+sf (a+ s) + max
{

ΛθH

[
q̄a+s − q̄a

∗
]
, 0
}
EVH(q̄t+s)]ds, (B1)

while if she goes back to school, her discounted lifetime income will be∫ ∞
∆

e−(r+δ)s[q̄t+sf (a+ s) + max
{

ΛθH

[
q̄s − q̄a

∗
]
, 0
}
EVH(q̄t+s)]ds. (B2)

The latter expression thus enables the agent to reduce q̄a and potentially earn more from being assigned to high-

type firms.2 However, its comparison to the previous expression makes it clear that if f(a) and ∆ are sufficiently large,

then it will not be beneficial for a manager to go back to school. For example, an upper bound for the discounted

lifetime income from schooling is

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) + ΛθH

[
1 − q̄a

∗]
EVH(q̄t+s)]ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
q̄tΛθH

[
1 − q̄a

∗
]

r + δ − g
e−∆(r+δ−g), (B3)

which assumes that after re-schooling the manager has the highest contribution to innovation forever (whereas in

reality her contribution would decline as she ages). On the other hand, the minimum lifetime incomes she would

obtain without going to school can be written as∫ ∆

0
e−(r+δ)s[q̄t+s inf f (a)]ds+

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds =

∫ ∞
∆

e−(r+δ)sq̄t+sf (a+ s) ds+
1 − e−(r+δ−g)∆

r + δ − g
q̄tfmin, (B4)

where fmin = inf f(a). By comparing these two expressions and noting that their first terms are identical, we obtain

a sufficient condition for any manager to never prefer to go back to school,

ΛθH

[
1 − q̄a

∗
]
< e∆(r+δ−g)fmin. (B5)

As already anticipated, this condition is satisfied when ∆ or when fmin are large.

1This is because the problem facing an agent at any two dates is identical given the stationary environment and the constant probability of death, δ,
and thus if the agent wanted to wait between time t and t′, then she would also want to wait indefinitely, violating the transversality condition.

2Notice that in writing these expressions, we are interpreting a literally as age, so that when the manager goes back to school, her age is not affected.
Alternatively, a could stand for the manager’s experience in a particular line of business, and in that case, a could also be reset when she goes back to
schooling, which would introduce an additional opportunity cost of returning to school. This does not have an important effect on the qualitative argument
here, though it may provide a better approximation to some applications.
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An alternative form of comparative advantage: We introduced the comparative advantage of young managers

in radical innovation in the simplest possible form—by assuming that they have the same productivity in incremental

innovation and greater productivity in radical innovation. Similar results would obtain as well if they have comparable

productivity in radical innovation but lower productivity in incremental innovation.

Suppose, for example, that all managers have the same rate of arrival of radical innovations given by ΛθH when they

are employed by high-type firms, but the productivity of a manager aged a in incremental innovation is ξg(a), where

g(a) is increasing. In this case, the pattern of assignment will be slightly different—it will be first the older managers

who are assigned to management, but there will still exist a critical age threshold, say a∗∗, such that managers younger

than this age will be assigned to high-type firms wishing to specialize in radical innovation. Young managers will also

earn strictly less than older managers, but radical innovations will continue to increase following a switch from older

to younger managers.

Comparative advantage from competing uses of time: Relatedly, in our baseline model, radical innovations

and the operational duties of a manager do not crowd each other out. An alternative, equally natural assumption

is that, because seeking radical innovations is time-consuming, it will interfere with the cost-reducing activities of

the manager. Under the natural and common assumption that all of these tasks have to be performed by a single

manager (i.e., it is not possible to add a separate manager for innovations), attempting radical innovations will have the

opportunity cost of reducing the other beneficial roles of the manager. Since experienced managers are more productive

at cost reduction and other operational roles, this reasoning directly implies that it will be younger managers who

have an effective comparative advantage in radical innovations, even if they are less productive in both operations and

radical innovations than older managers.

A re-combinatorial microfoundation for comparative advantage: Another microfoundation for this pat-

tern of comparative advantage is to assume that radical innovation requires recombining different ideas, while more

experienced managers will have an expertise in exploiting a specific set of well-established ideas (perhaps ideas with

which they have worked before). Such a microfoundation can be developed in a way that generates the pattern of

comparative advantage in our baseline model.

One advantage of this alternative line is that the reason why more experienced managers are better at operations,

but not as good as young managers in radical innovations, can be endogenized. Specifically, managers may choose

to invest in their ability to understand and exploit certain technologies as they age, but this could be at the expense

of remaining on top of other ideas, while younger managers may be “jacks of all trades, masters of none,” making

them less effective in running an established business, and as a result, giving them a comparative advantage in radical

innovation.

An organizational microfoundation for comparative advantage: Yet another possibility leading to the

pattern of matching in our model would come not from an intrinsic comparative advantage of young managers for

radical innovation, but from the potential conflict of interest between managers and owners. Suppose that attempting

radical innovation is more costly for managers, and it is difficult for the owners of the firm to verify that the manager

is truly attempting radical innovations. This sort of situation will create a major conflict of interest, whereby all

managers might wish to claim that they are attempting radical innovations, but in reality may shirk and go for the

easy life. If, as it seems plausible, more experienced managers are better able to control the flow of information out of

an organization and thus hide their true activities, it might be more difficult for owners to induce these experienced

managers to engage in radical innovation. It may then be cheaper and more effective to turn to more “pliable” younger

managers when there will be a switch to radical innovation.

Finite lives and risk-taking: The comparative advantage of younger managers in more radical innovations may

also come from their greater willingness to take risks, which could in turn have biological roots or may be a consequence
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of the fact that, when lives are finite, they will have longer horizon than older managers and thus tend to have greater

tolerance for risk.

Managers and inventors: We have so far abstracted from inventors, which play an important role both in

practice and in our data analysis below. A final alternative structure which leads to similar results is to assume that

it is not young managers who are important for radical innovation, but young inventors (a pattern for which we also

find support in the data). But if young inventors work better in a team with young managers, for example because

older managers would not communicate well with them or would attempt to block some of their ideas, there will again

be a pattern in which young managers are assigned to firms specializing in radical innovations.
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